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0	Introduction	This	is	the	solution	manual	to	Cryptography	Theory	and	Practice,	Second	Edition,	which	was	published	in	March,	2002.	I	provide	“final	answers”	to	computational	questions,	and	detailed	proofs	for	all	mathematical	questions.	I	obtained	most	answers	to	computational	questions	using	Maple,	which	is	a	convenient	language	for
performing	many	calculations	related	to	cryptography.	Computer	programs	are	not	included	in	this	solution	manual,	however.	This	solution	manual	refers	to	the	first	printing	of	the	book.	Several	exercises	contained	typos	or	other	errors,	which	are	noted	in	this	solution	manual.	Also,	I	maintain	an	up-to-date	errata	list	for	the	book,	which	can	be	found
on	the	following	web	page:	www.cacr.math.uwaterloo.ca/˜dstinson/CTAP2/CTAP2.html	These	errors	will	be	fixed	in	later	printings	of	the	book.	I	would	appreciate	any	comments	or	feedback	about	this	solution	manual	and	about	the	book	in	general,	especially	relating	to	its	suitability	as	a	textbook.	In	particular,	I	will	be	grateful	to	anyone	who	finds
errors	in	the	book	and	points	them	out	to	me.	I	hope	that	this	solution	manual	will	be	a	useful	resource	for	instructors	teaching	courses	in	cryptography.	Please	try	to	prevent	the	distribution	of	this	manual	to	students!	The	usefulness	of	the	Exercises	will	be	severely	limited	if	this	manual	somehow	escapes	into	the	public	domain.	Douglas	R.	Stinson
Waterloo,	Ontario	June,	2002	1	1	Classical	Cryptography	Exercises	1.1	Evaluate	the	following:	(a)	​​​	​​​	​​.	Answer:	​​​	​​​	​​	​​.	(b)	​​​	​​​	​​.	Answer:	​​​	​​​	​​	​.	(c)	​​	​​​	​​​.	Answer:	​​	​​​	​​​	​​.	(d)	​​	​​​	​​​.	Answer:	​​	​​​	​​​	.	1.2	Suppose	that	​	​	​	​,	and	​	​​​	​​.	Prove	that	​​	​​​	​	​	​​​	​​​	​	​	​	Answer:	We	have	​​	​	​,	where	​	​	​	​	and	​	​​​	​.	​	​	​​​	​	​	​​,	where	​	​	​	​	​.	Therefore	Then	​​​	​	​	​	​	​​​	​​.	1.3	Prove	that	​​​	​	​	​​​	​	if	and	only	if	​	​​​	​​.	Answer:	​​​	​	​	​​​	​	implies	that	​	​	​	​	and	​	​​	​	​	​,	​	​	​​
​,	so	​	​​​	​​.	Conversely,	where	​	​	​	​.	Then	​	​​​	​​.	Then	​	​​.	Let	​	​​​	​.	Then	​	​​​	suppose	for	some	​	,	and	hence	​	​​	​	​​​	​	​,	so	​	​​​	​	​.	1.4	Prove	that	​​​	​	​	,	where	​	​​​	​	​	.	​	​	​	​	​	​	,	so	​	​	​	​	,	and	hence	Answer:	​	​	​	​	​.	​	​	1.5	Use	exhaustive	key	search	to	decrypt	the	following	ciphertext,	which	was	encrypted	using	a	Shift	Cipher	:	​	​	​	​	​	​	​	​	​	​	​	​	​​	​​	​​	​	​	​	​	​	​	​​	BEEAKFYDJXUQYHYJIQRYHTYJIQFBQDUYJIIKFUHCQD	​
Answer:	The	key	is	​​,	and	the	plaintext	is	the	following:	Look,	up	in	the	air,	it’s	a	bird,	it’s	a	plane,	it’s	Superman!	1.6	If	an	encryption	function	​	is	identical	to	the	decryption	function	​	,	then	the	key	is	said	to	be	an	involutory	key.	Find	all	the	involutory	keys	in	the	Shift	Cipher	2	Exercises	1.7	3	over	​​.	Answer:	The	involutory	keys	are	​	and	​​.	Determine	the
number	of	keys	in	an	Affine	Cipher	over	​	for	​	​​​	​​​	and	​	​.	Answer:	​​	​	​,	so	​	​​	​	​.	The	affine	cipher	over	​​	has	​​	​	​	keys.	​​​	​	​​	,	so	​	​​​	​	​​	​	​.	The	affine	cipher	over	​​	has	​​​	​	​​​	keys.	​	​	​	​​	,	so	​	​	​	​​	​	​	​	​.	The	affine	cipher	over	​	​	​​	​​​​	keys.	​​​	has	​	​	List	all	the	invertible	elements	in	​	for	​	​​	​​	and	​​.	Answer:	The	invertible	elements	in	​​	are	​,	​,	​,	​,	​​,	​​,	​​,	​	,	​​,	​,	​	and	.	The	invertible	elements	in	​​	are	​,	,	,	​,	,	​,	​​,	​​,	​	,	​​,	​	,	​​,	​,
​,	​,	​,	​,	​,	​​	and	​	.	The	invertible	elements	in	​​	are	​,	,	​,	,	​,	​,	​,	​​,	​	,	​​,	​​,	​	,	​​,	​​,	,	​,	,	​,	,	​,	​​,	​	,	​​	and	​	.	​,	determine	​​​	​	by	trial	and	error.	For	​	​,	​​,	​	​​,	,	​	​,	​	​,	Answer:	​	​,	​	​​,	​	​​,	​​	​,	​​	​,	​	​	,	​​	​,	​	,	​​	,	​​	​,	​	​	,	​​	​,	​​	​,	​	​​,	​	​​,	,	​	,	​,	​	,	​	​​,	​	and	​	​.	Suppose	that	​​	​	is	a	key	in	an	Affine	Cipher	over	​​.	(a)	Express	the	decryption	function	​	in	the	form	​	​	​	​​	,	where	​	​	​​	​​.	Answer:	​	​	​	​​.	(b)	Prove	that	​	​	​	​	for	all	​	​​.	Answer:	​	​​	​	​	​	​​	​​​	​	​	​	​	​​​	​​.	(a)
Suppose	that	​	​	is	a	key	in	an	Affine	Cipher	over	​.	Prove	that	is	an	involutory	key	if	and	only	if	​​​	​	and	​	​	​	​	​​​	​​.	Answer:	​	​	is	an	involutory	key	if	and	only	if	​	​	​	​	​	​	​	​​​	​	for	all	​	​	​	​	​	​	​​​	​​,	​.	Clearly	​	​	​	​	​	​	​	​​​	​	and	​	​	​	​	​​​	​​.	so	we	require	that	(b)	Determine	all	the	involutory	keys	in	the	Affine	Cipher	over	​.	Answer:	​	​	​​​	​​	if	and	only	if	​​	​	​​	or	​	.	If	​,	then	​	​.	If	,	then	​	​​	​​	​​	​	or	​	.	If	​​,	then	​	​​	​	or	​​.	Finally,	if	​
,	then	​	can	be	any	element	of	​.	(c)	Suppose	that	​	​​,	where	​	and	​	are	distinct	odd	primes.	Prove	that	the	number	of	involutory	keys	in	the	Affine	Cipher	over	​	is	​	​	​	​	​	​	​.	Answer:	There	are	four	possible	values	for	,	namely,	​;	​	​​​	​	​​​	​​,	​	​​​	​​;	and	the	​;	the	solution	to	the	system	​	​​​	​​,	​	​​​	​​.	If	​,	then	solution	to	the	system	​	​.	If	​,	then	​	can	be	any	element	in	​.	In	the	third	case,	​	​​​	​​,	so
there	are	​	possible	values	for	​.	In	the	we	require	that	​	​	​​​	​​,	so	there	are	​	possible	values	fourth	case,	we	require	that	​	for	​.	The	total	number	of	involutory	keys	is	therefore	​	​	​	​	​	​	​.	1.8	1.9	1.10	​	​	​	1.11	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	4	1.12	Classical	Cryptography	(a)	Let	​	be	prime.	Prove	that	the	number	of	over	​	is	​​	​	​​	​​.	matrices	that	are	invertible	HINT	Since	​	is	prime,	​	is	a	field.	Use
the	fact	that	a	matrix	over	a	field	is	invertible	if	and	only	if	its	rows	are	linearly	independent	vectors	(i.e.,	there	does	not	exist	a	non-zero	linear	combination	of	the	rows	whose	sum	is	the	vector	of	all	​’s).	Answer:	The	first	row	can	be	any	non-zero	vector,	so	there	are	​	​	​	possiblilities.	Given	the	first	row,	say	​,	the	second	row	can	be	any	vector	that	is	not	a
scalar	multiple	of	​.	Therefore	there	are	​	​	​	possibilities	for	the	second	row,	given	the	first	row.	Hence,	the	total	number	of	invertible	matrices	is	​​	​	​​	​​.	(b)	For	​	prime	and	​	an	integer,	find	a	formula	for	the	number	of	​	​	matrices	that	are	invertible	over	​.	Answer:	The	number	of	invertible	matrices	is	​​	​	​​	​	​​	​​	​​	​​	​	1.13	For	​	​​	​	and	​,	how	many	matrices	are	there	that	are
invertible	over	​?	Answer:	For	​	​,	there	are	​	​	​	​​	​	​​	​	​	​	invertible	matrices	(use	the	Chinese	remainder	theorem	and	Exercise	1.12).	Similarly,	for	​	​,	there	are	​	​	​	​​​	​	​​​	​​	​​	​	invertible	matrices.	For	​	​,	there	are	​​	​​	​	​​	​	​​​​	invertible	matrices.	1.14	(a)	Prove	that	​​​	​	​	​​​	​	if	​	is	a	matrix	over	​​	such	that	​	​	.	​	​​​	​​.	Answer:	If	​	​	,	then	​​	​	and	hence	​​​	​	​	​	​​​	​​.	This	implies	that	​​​	​	(b)	Use	the	formula	given	in
Corollary	1.4	to	determine	the	number	of	involutory	keys	in	the	Hill	Cipher	(over	​​)	in	the	case	​	.	Answer:	If	​​​	​	​	​​​	​	then	there	are	​	involutory	matrices,	and	​	​​​	​	then	there	are	​	involutory	matrices,	for	a	total	if	​​​	​	of	​​	involutory	matrices.	The	eight	involutory	matrices	with	determinant	​	are	as	follows:	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​​	​	​​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​​	​	​​	​	​	​	​	​​	​	​​	​	​​	​	​​	​	The	involutory	matrices	with
determinant	​	have	the	following	forms	when	reduced	modulo	:	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	When	reduced	modulo	​​,	an	involutory	matrix	with	determinant	following	form:	​	​	​	​	​	​	has	the	​	​	where	​​	​	​	​	​​​	​​​.	The	number	of	triples	​​	​	​	​​​	that	satisfy	this	congruence	is	easily	computed:	if	​	or	​	,	then	there	are	​	ordered	pairs	​	​	;	and	if	​	​	​	,	then	there	are	​	ordered	pairs	​	Exercises	5	​	​	.
Hence,	the	total	number	of	triples	is	​	​	​​	​	​​	.	Now	we	can	use	the	Chinese	remainder	theorem	to	combine	any	solution	modulo	with	any	solution	modulo	​​,	so	the	total	number	of	solutions	modulo	​	is	​​	​,	as	stated	above.	1.15	Determine	the	inverses	​	of	the	following	matrices	over	​​:	​​	​​	(a)	​	​	Answer:	The	inverse	matrix	is	​	​	​	​	​	​	​	​	​​	​	(b)	​	​	​	​​	​	Answer:	The	inverse	matrix​is
1.16	​	​	​	​​	​	​​	​​	​	​	​	​	(a)	Suppose	that	​	is	the	following	permutation	of	​​​	​	​	​	​	​​:	​	​	​	​	​	​	​	​	​	​	​	​	​	​	Compute	the	permutation	​	.	Answer:	The	permutation	​	is	as	follows:	​	​	​	​	​	​	​	​	​	​	​	​	​	​	(b)	Decrypt	the	following	ciphertext,	for	a	Permutation	Cipher	with	​	​,	which	was	encrypted	using	the	key	​:	ETEGENLMDNTNEOORDAHATECOESAHLRMI	​	1.17	Answer:	Note:	This	ciphertext	was
actually	encrypted	using	the	key	​	.	The	plaintext	is	the	following:	Gentlemen	do	not	read	each	other’s	mail.	(a)	Prove	that	a	permutation	​	in	the	Permutation	Cipher	is	an	involutory	key	if	​​	​	​	​	​	​	.	and	only	if	​	​	​	implies	​	​	​,	for	all	​​	​	Answer:	A	permutation	​	is	involutory	if	and	only	if	​	​	​	​	for	all	​.	Denoting	​	​	​	,	it	must	be	the	case	that	​	​	​.	(b)	Determine	the	number	of
involutory	keys	in	the	Permutation	Cipher	for	​	​	​​	​	​	and	​.	Answer:	An	involutory	permutation	must	consist	of	fixed	points	and	cycles	of	length	two.	For	​	,	there	are	involutory	permutations.	For	​	​,	there	are	involutory	permutations.	For	​	,	there	are	​	permutations	consisting	of	two	cycles	of	length	;	​	permutations	having	one	cycle	of	length	and	two	fixed
points;	and	​	permutation	consisting	of	fixed	points.	The	total	number	of	involutory	permutations	is	​​.	For	​	​,	there	are	​​	permutations	consisting	of	two	cycles	of	length	and	one	fixed	point;	​​	permutations	having	one	cycle	of	length	and	three	​​	​	6	Classical	Cryptography	fixed	points;	and	​	permutation	consisting	of	​	fixed	points.	The	total	number	of	involutory
permutations	is	​.	For	​	​,	there	are	​​	permutations	consisting	of	three	cycles	of	length	;	​	permutations	consisting	of	two	cycles	of	length	and	two	fixed	points;	​​	permutations	having	one	cycle	of	length	and	four	fixed	points;	and	​	permutation	consisting	of	​	fixed	points.	The	total	number	of	involutory	permutations	is	​.	1.18	Consider	the	following	linear
recurrence	over	​	of	degree	four:	​.	​​	​	​​	​	​​	​	​​	​	​	​​	​	​​​	​	​	For	each	of	the	​​	possible	initialization	vectors	​	​	​	​	​	​​	​	​​	​​​	,	determine	the	period	of	the	resulting	keystream.	Answer:	​​	​​	​​	​	produces	a	keystream	with	period	​,	and	all	other	initialization	vectors	produce	a	keystream	with	period	​.	1.19	Redo	the	preceding	question,	using	the	recurrence	​	​​	​	​​	​	​​	​	​​​	​	​	​.	Answer:	​​	​​	​​	​	produces	a
keystream	with	period	​,	and	all	other	initialization	vectors	produce	a	keystream	with	period	​​.	1.20	Suppose	we	construct	a	keystream	in	a	synchronous	stream	cipher	using	the	folbe	the	key,	let	be	the	keystream	alphabet,	and	let	lowing	method.	Let	​	be	a	finite	set	of	states.	First,	an	initial	state	​	​	​	is	determined	from	by	some	method.	For	all	​	​,	the	state	​	​
is	computed	from	the	previous	state	​	​	according	to	the	following	rule:	​	​	​​	​	​​	​	​	​	where	​	​	​	​.	Also,	for	all	​	​,	the	keystream	element	​	​	is	computed	using	the	following	rule:	​​	​	​​	​	​	​	​	​	where	​	​	​	.	Prove	that	any	keystream	produced	by	this	method	has	period	at	most	​	.	Answer:	For	a	fixed	key	,	each	​	​	can	be	regarded	as	a	function	of	​	​	.	Define	​	​​​​​	​	​	​​	​	​​​	​	​	​	​	​	​​	​​​	It	follows	from	the
pigeon-hole	principle	that	​	​	​​​,	because	​	​	​	​	for	all	​	​.	Suppose	that	​	​	​​,	where	​	​	​	​	​.	Then	it	​​	​	​	​​	for	all	​	​.	Hence,	​​	​	​	​​	for	all	​	​,	and	the	keystream	has	period	​	​	​	​​​.	1.21	Below	are	given	four	examples	of	ciphertext,	one	obtained	from	a	Substitution	Cipher,	one	from	a	Vigen`ere	Cipher,	one	from	an	Affine	Cipher,	and	one	unspecified.	In	each	case,	the	task	is	to
determine	the	plaintext.	Give	a	clearly	written	description	of	the	steps	you	followed	to	decrypt	each	ciphertext.	This	should	include	all	statistical	analysis	and	computations	you	performed.	The	first	two	plaintexts	were	taken	from	“The	Diary	of	Samuel	Marchbanks,”	by	Robertson	Davies,	Clarke	Irwin,	1947;	the	fourth	was	taken	from	“Lake	Wobegon
Days,”	by	Garrison	Keillor,	Viking	Penguin,	Inc.,	1985.	(a)	Substitution	Cipher	:	Exercises	7	EMGLOSUDCGDNCUSWYSFHNSFCYKDPUMLWGYICOXYSIPJCK	QPKUGKMGOLICGINCGACKSNISACYKZSCKXECJCKSHYSXCG	OIDPKZCNKSHICGIWYGKKGKGOLDSILKGOIUSIGLEDSPWZU
GFZCCNDGYYSFUSZCNXEOJNCGYEOWEUPXEZGACGNFGLKNS	ACIGOIYCKXCJUCIUZCFZCCNDGYYSFEUEKUZCSOCFZCCNC	IACZEJNCSHFZEJZEGMXCYHCJUMGKUCY	HINT	​	decrypts	to	​.	Answer:	The	plaintext	is	as	follows:	I	may	not	be	able	to	grow	flowers,	but	my	garden	produces	just	as	many	dead	leaves,	old	overshoes,	pieces	of	rope,	and
bushels	of	dead	grass	as	anybody’s,	and	today	I	bought	a	wheelbarrow	to	help	in	clearing	it	up.	I	have	always	loved	and	respected	the	wheelbarrow.	It	is	the	one	wheeled	vehicle	of	which	I	am	perfect	master.	(b)	Vigen`ere	Cipher	:	KCCPKBGUFDPHQTYAVINRRTMVGRKDNBVFDETDGILTXRGUD
DKOTFMBPVGEGLTGCKQRACQCWDNAWCRXIZAKFTLEWRPTYC	QKYVXCHKFTPONCQQRHJVAJUWETMCMSPKQDYHJVDAHCTRL	SVSKCGCZQQDZXGSFRLSWCWSJTBHAFSIASPRJAHKJRJUMV	GKMITZHFPDISPZLVLGWTFPLKKEBDPGCEBSHCTJRWXBAFS	PEZQNRWXCVYCGAONWDDKACKAWBBIKFTIOVKCGGHJVLNHI
FFSQESVYCLACNVRWBBIREPBBVFEXOSCDYGZWPFDTKFQIY	CWHJVLNHIQIBTKHJVNPIST	Answer:	The	keyword	is	​​​​​	,	and	the	plaintext	is	as	follows:	I	learned	how	to	calculate	the	amount	of	paper	needed	for	a	room	when	I	was	at	school.	You	multiply	the	square	footage	of	the	walls	by	the	cubic	contents	of	the	floor	and	ceiling	combined,	and
double	it.	You	then	allow	half	the	total	for	openings	such	as	windows	and	doors.	Then	you	allow	the	other	half	for	matching	the	pattern.	Then	you	double	the	whole	thing	again	to	give	a	margin	of	error,	and	then	you	order	the	paper.	(c)	Affine	Cipher	:	KQEREJEBCPPCJCRKIEACUZBKRVPKRBCIBQCARBJCVFCUP
KRIOFKPACUZQEPBKRXPEIIEABDKPBCPFCDCCAFIEABDKP	BCPFEQPKAZBKRHAIBKAPCCIBURCCDKDCCJCIDFUIXPAFF	ERBICZDFKABICBBENEFCUPJCVKABPCYDCCDPKBCOCPERK	IVKSCPICBRKIJPKABI	Answer:	The	key	is	​​​	.	The	plaintext	consists	of	the	French	lyrics	to	“O	Canada”:	ˆ	Canada!	O	Terre	de	nos	a	¨ieux.	Ton	front	est	ceint,	De
fleurons	glorieux.	Car	ton	bras	Sait	porter	l’´ep´ee,	Il	sait	porter	la	croix.	Ton	histoire	est	une	e´	pop´ee,	8	1.22	Classical	Cryptography	des	plus	brillants	exploits.	Et	ta	valeur,	de	foi	tremp´ee,	prot`egera	nos	foyers	et	nos	droits.	(d)	unspecified	cipher:	BNVSNSIHQCEELSSKKYERIFJKXUMBGYKAMQLJTYAVFBKVT
DVBPVVRJYYLAOKYMPQSCGDLFSRLLPROYGESEBUUALRWXM	MASAZLGLEDFJBZAVVPXWICGJXASCBYEHOSNMULKCEAHTQ	OKMFLEBKFXLRRFDTZXCIWBJSICBGAWDVYDHAVFJXZIBKC	GJIWEAHTTOEWTUHKRQVVRGZBXYIREMMASCSPBNLHJMBLR	FFJELHWEYLWISTFVVYFJCMHYUYRUFSFMGESIGRLWALSWM
NUHSIMYYITCCQPZSICEHBCCMZFEGVJYOCDEMMPGHVAAUM	ELCMOEHVLTIPSUYILVGFLMVWDVYDBTHFRAYISYSGKVSUU	HYHGGCKTMBLRX	Answer:	This	is	a	Vigen`ere	Cipher.	The	keyword	is	​​​​​​	,	and	the	plaintext	is	as	follows:	I	grew	up	among	slow	talkers,	men	in	particular,	who	dropped	words	a	few	at	a	time	like	beans	in	a	hill,	and	when
I	got	to	Minneapolis	where	people	took	a	Lake	Wobegon	comma	to	mean	the	end	of	a	story,	I	couldn’t	speak	a	whole	sentence	in	company	and	was	considered	not	too	bright.	So	I	enrolled	in	a	speech	course	taught	by	Orville	Sand,	the	founder	of	reflexive	relaxology,	a	selfhypnotic	technique	that	enabled	a	person	to	speak	up	to	three	hundred	words
per	minute.	(a)	Suppose	that	​	​	​	​	​	​	​​	and	​	​	​	​	​	​	​​	are	both	probability	distributions,	​​	.	Let	​​	​	​	​	​	​	​​​	be	any	permutation	of	​	​	​	​	​	​	​​	.	Prove	and	​	that	the	quantity	​	​	​	​​	​​​	is	maximized	when	​	​	​​​	.	Answer:	Suppose	that	​	​​	​	​	​	for	some	​	​	​.	Define	​​	​	​​​	​​	​​	​	​	​	​	​	Then	we	have	​	​	​	​​	​​​​	​	​	​	​​	​	​	if	​	​​	​	if	​	​	if	​	​.	​​	​​​	​​	​	​	​	​​​	​​	Therefore	the	desired	sum	is	not	decreased	when	​	​​	and	​	​	are	exchanged.	By	a	sequence	of
exchanges	of	this	type,	we	see	that	the	sum	attains	its	​​​	.	maximum	possible	value	when	​	​	(b)	Explain	why	the	expression	in	Equation	(1.1)	is	likely	to	be	maximized	when	​	​​	.	Answer:	(Note:	this	equation	is	on	page	34.)	Suppose	that	​	is	a	permutation	​	​​	.	Then	it	is	“likely”	that	of	​​	​	​	​	​	​	such	that	​	​	​	​	​	​​	.	Assuming	that	this	is	the	case,	we	proceed.	When	​	​
Exercises	9	​	​,	the	following	equation	holds:	​​	​	​​	​​	​	​	​​	​​	​	​	​	​	​	​​	​	​	​	By	the	result	proven	in	part	(a),	this	sum	is	at	least	as	great	as	any	sum	​​	​	​​	​​	​	​	​​	​	​	where	​	​.	1.23	Suppose	we	are	told	that	the	plaintext	breathtaking	yields	the	ciphertext	UPOTENTOIFV	where	the	Hill	Cipher	is	used	(but	​	is	not	specified).	Determine	the	encryption	matrix.	Answer:	There	is	an	error	in
the	statement	of	this	question;	the	plaintext	does	not	have	the	same	length	as	the	ciphertext.	The	ciphertext	should	be	as	follows:	RUPOTENTOIFV	Then,	using	the	first	​	plaintext	and	ciphertext	characters,	we	compute	​	​	​	​	​​	​	​​	​	​​	​	​	​	​	​	​	​​	​	​​	​​	​​	​	​	​	​	​	​	​	​	​​	​	​	​	​	​	​​	If	desired,	we	can	check	this	by	verifying	that	the	last	​	plaintext	characters	encrypt	properly:	​	​​	​	​	​	​	​	​	​​	​	​	​	​	​	​	​	​	​	​	1.24
An	Affine-Hill	Cipher	is	the	following	modification	of	a	Hill	Cipher	:	Let	​	be	​​​​	.	In	this	cryptosystem,	a	key	a	positive	integer,	and	define	consists	of	a	pair	​	​​,	where	is	an	​	​	invertible	matrix	over	​​,	and	​	​​​​	.	For	​	​	​	​	​	​	​	​​	and	​	​	,	we	compute	​	​	​	​	​	​	​	​	by	means	of	the	formula	​	​	​.	Hence,	if	!​	​	and	​	​	​	​	​	​	​	​​	,	then	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​​	​	​​	!	!​	!	​	!​	​	..	.	..	.	!​	!​	​	​	​​​	​​​	​​​	Suppose	Oscar	has	learned	that	the
plaintext	adisplayedequation	is	encrypted	to	give	the	ciphertext	DSRMSIOPLXLJBZULLM	!	​	!​	​	..	.	!​	​	​	​	​	​	​	​	​	​	​	​	​	​	​​	​	10	Classical	Cryptography	and	Oscar	also	knows	that	​	​.	Determine	the	key,	showing	all	computations.	Answer:	We	are	given	the	following:	​	​​	​​	​	​​	​​​	​​​	​​	​​	​​	​	​​	​​	​	​​	​​	​​	​​	​	​​	​​	​	​	​​	and	​​	​​​	​	​	​	​	​​​	​	​	​	​	​​​	​​	​	​​	​​​	​	​	​​	​​	​	​	​​​	​​​	​	​	For	​	​	​	​	​,	it	holds	that	​	​​	​	​.	Therefore,	for	​	​	​	​	​,	we	have	​	​	​​	​​	.	We	form	the	​	​
matrix	"	​	having	rows	​	​	​​	(​	​	​	​	​)	and	the	​	​	matrix	#	​	having	rows	​	​	(​	​	​	​	​);	then	"	​	#	​	.	​	.	Once	we	have	found	,	we	can	determine	​	from	the	equation	​	In	the	given	example,	we	have	​	"​	​	​	#​	​	and	Then	can	be	computed	to	be	​	​	​	​	​	​​	​​	​​	​	​	​	​	​	​	​	​	​	​​	​	​	​	​	​	​	​	​	​​	​	​​	​	​	​​	​	​	​​	​	​	If	desired,	it	can	be	checked	that	​	​​	​	​,	for	​	​	​	​	​.	1.25	Here	is	how	we	might	cryptanalyze	the	Hill	Cipher	using	a
ciphertext-only	attack.	Suppose	that	we	know	that	​	.	Break	the	ciphertext	into	blocks	of	length	two	letters	(digrams).	Each	such	digram	is	the	encryption	of	a	plaintext	digram	using	the	unknown	encryption	matrix.	Pick	out	the	most	frequent	ciphertext	digram	and	assume	it	is	the	encryption	of	a	common	digram	in	the	list	following	Table	1.1	(for
example,	$	%	or	&$	).	For	each	such	guess,	proceed	as	in	the	known-plaintext	attack,	until	the	correct	encryption	matrix	is	found.	Here	is	a	sample	of	ciphertext	for	you	to	decrypt	using	this	method:	Exercises	11	LMQETXYEAGTXCTUIEWNCTXLZEWUAISPZYVAPEWLMGQWYA	XFTCJMSQCADAGTXLMDXNXSNPJQSYVAPRIQSMHNOCVAXFV
Answer:	The	key	is	​	​​	​	​​	​	The	plaintext	is	the	following:	The	king	was	in	his	counting	house,	counting	out	his	money.	The	queen	was	in	the	parlour,	eating	bread	and	honey.	1.26	We	describe	a	special	case	of	a	Permutation	Cipher.	Let	​​	​	be	positive	integers.	Write	out	the	plaintext,	by	rows,	in	​	​	rectangles.	Then	form	the	ciphertext	by	taking	the	columns	of
these	rectangles.	For	example,	if	​	​	​	​,	then	we	would	encrypt	the	plaintext	“​	​	​​​	”	by	forming	the	following	rectangle:	cryp	togr	aphy	The	ciphertext	would	be	“	​​​​​​​​​​​	.”	(a)	Describe	how	Bob	would	decrypt	a	ciphertext	string	(given	values	for	​	and	​).	Answer:	Bob	can	write	out	the	ciphertext	string	by	rows,	in	​	​	rectangles.	The	plaintext	is	formed	by	taking	the
columns	of	these	rectangles.	(b)	Decrypt	the	following	ciphertext,	which	was	obtained	by	using	this	method	of	encryption:	MYAMRARUYIQTENCTORAHROYWDSOYEOUARRGDERNOGW	Answer:	Here	​	and	​	​.	The	plaintext	is	the	following:	Mary,	Mary,	quite	contrary,	how	does	your	garden	grow?	1.27	The	purpose	of	this	exercise	is	to	prove	the
statement	made	in	Section	1.2.5	that	the	​	​	coefficient	matrix	is	invertible.	This	is	equivalent	to	saying	that	the	rows	of	this	matrix	are	linearly	independent	vectors	over	​.	As	before,	we	suppose	that	the	recurrence	has	the	form	​​	​	​	​	​	​	'​	​​	​	​​​	​	​	​	​	​	​	​	​​	comprises	the	initialization	vector.	For	​	​,	define	(​	​​	​	​	​	​	​	​​	​	​	Note	that	the	coefficient	matrix	has	the	vectors	(	​	​	​	​	​	(​	as	its
rows,	so	our	objective	is	to	prove	that	these	​	vectors	are	linearly	independent.	Prove	the	following	assertions:	(a)	For	any	​	​,	(​	​	​	​	​	​	'​	(​	​	​​​	​	Answer:	This	is	immediate.	(b)	Choose	)	to	be	the	minimum	integer	such	that	there	exists	a	non-trivial	linear	combination	of	the	vectors	(	​	​	​	​	​	(	which	sums	to	the	vector	​​	​	​	​	​	​	modulo	.	Then	(	​	​	​	​	*​	(​	​​​	​	12	Classical
Cryptography	​	and	not	all	the	*	​	’s	are	zero.	Observe	that	)	​	​	​,	since	any	​	​	​	vectors	in	an	​-dimensional	vector	space	are	dependent.	Answer:	A	dependence	relation	has	the	form	​	​	​	*​	(​	​​​	​​	​	​	​	​	​​​	​​	​	​	where	*​	​	​	​	​	​	*	​​	​	.	Clearly	)	​	​	​,	because	any	​	​	​	vectors	are	linearly	dependent.	Also,	we	note	that	*	​	by	the	minimality	of	).	Therefore	(	​	​	​	​	*​	(​	​​​	​	Now,	could	it	be	the	case	that	*
​	*	​	​?	If	so,	then	we	have	(	​​	​	​	​	​	​​.	But	(	​	​	​	​	​	​	​	​	,	so	​	​	​	​.	Using	the	fact	that	'​	​	(as	discussed	in	Section	1.1.7),	we	can	rewrite	the	recurrence	​​	​	“backwards”,	as	follows:	​​	​	​	​	​	​	​	​	'​	​​	​	​​​	'​	​​	​	​​​	​	where	we	define	'	​	​.	Then	we	see	that	​	​​	​,	which	generates	a	keystream	consisting	entirely	of	“​”s.	We	do	not	allow	this	case	to	occur	(as	discussed	on	page	22),	which	proves	the	desired
result.	(c)	Prove	that	the	keystream	must	satisfy	the	recurrence	​	​	​	​	​	​	*​	​​	​	​​​	for	any	​	​.	Answer:	This	is	immediate.	​,	then	the	keystream	satisfies	a	linear	recurrence	of	(d)	Observe	that	if	)	degree	less	than	​,	a	contradiction.	Hence,	)	​	​	​,	and	the	matrix	must	be	invertible.	Answer:	In	part	(c),	we	showed	that	the	keystream	satisfies	a	recurrence	of	degree	at
most	)	​.	However,	the	keystream	is	generated	by	a	recurrence	of	degree	exactly	equal	to	​,	which	implies	that	it	cannot	be	generated	by	a	recurrence	of	lower	degree.	Hence	)	​	​.	Therefore	the	​	vectors	(	​	​	​	​	​	(​	are	linearly	independent,	and	the	matrix	is	invertible.	1.28	Decrypt	the	following	ciphertext,	obtained	from	the	Autokey	Cipher,	by	using
exhaustive	key	search:	​	MALVVMAFBHBUQPTSOXALTGVWWRG	Answer:	The	key	is	​​,	and	the	plaintext	is	the	following:	There	is	no	time	like	the	present.	1.29	We	describe	a	stream	cipher	that	is	a	modification	of	the	Vigen`ere	Cipher.	Given	a	keyword	​	​	​	​	​	​	of	length	​,	construct	a	keystream	by	the	rule	​	​	​	(​	​	​),	​​	​	​​	​	​	​​​	​	(​	​).	In	other	words,	each	time	we	​	​
Exercises	13	use	the	keyword,	we	replace	each	letter	by	its	successor	modulo	​.	For	example,	if	​​​​​​	is	the	keyword,	we	use	​​​​​​	to	encrypt	the	first	six	letters,	we	use	​​​​​​	for	the	next	six	letters,	and	so	on.	(a)	Describe	how	you	can	use	the	concept	of	index	of	coincidence	to	first	determine	the	length	of	the	keyword,	and	then	actually	find	the	keyword.	Answer:
Suppose	we	hypothesize	that	the	keyword	length	is	​.	Define	the	following	modified	ciphertext:	​	​	​	​	​​	​	​	​	​​	​	​	​	​	.	Then	the	string	​	​​	​	is	the	encryption	of	the	same	plaintext,	using	the	usual	Vigen`ere	Cipher	with	the	same	keyword.	Hence	the	methods	used	to	cryptanalyze	the	Vigen`ere	Cipher	can	be	applied	to	this	modified	ciphertext	string	to	determine	the
keyword	length	and	the	actual	keyword.	(b)	Test	your	method	by	cryptanalyzing	the	following	ciphertext:	IYMYSILONRFNCQXQJEDSHBUIBCJUZBOLFQYSCHATPEQGQ	JEJNGNXZWHHGWFSUKULJQACZKKJOAAHGKEMTAFGMKVRDO	PXNEHEKZNKFSKIFRQVHHOVXINPHMRTJPYWQGJWPUUVKFP
OAWPMRKKQZWLQDYAZDRMLPBJKJOBWIWPSEPVVQMBCRYVC	RUZAAOUMBCHDAGDIEMSZFZHALIGKEMJJFPCIWKRMLMPIN	AYOFIREAOLDTHITDVRMSE	Answer:	Tke	keyword	is	​​​​​	.	The	plaintext	is	from	page	351	of	”The	Codebreakers”,	by	D.	Kahn,	Macmillan,	1967.	The	most	famous	cryptologist	in	history	owes	his	fame	less	to	what	he	did
than	to	what	he	said,	and	to	the	sensational	way	in	which	he	said	it,	and	this	was	most	perfectly	in	character,	for	Herbert	Osborne	Yardley	was	perhaps	the	most	engaging,	articulate,	and	technicolored	personality	in	the	business.	1.30	We	describe	another	stream	cipher,	which	incorporates	one	of	the	ideas	from	the	“Enigma”	system	used	by	Germany
in	World	War	II.	Suppose	that	​	is	a	fixed	​,	permutation	of	​​.	The	key	is	an	element	​​.	For	all	integers	​	the	keystream	element	​	​	​​	is	defined	according	to	the	rule	​	​	​	​	​	​​​	​.	Encryption	and	decryption	are	performed	using	the	permutations	​	and	​	,	respectively,	as	follows:	​	​	​	​	​	​	​	​	​​​	​	and	​	​	​	​	​​​	​​	where	​	​​.	Suppose	that	​	is	the	following	permutation	of	​	​	​	​	​	​	​	​	​​	​​	​	​​	​	​	​​	​​	​​:	​	​	​	​​	​	​	​	​​	​	​	​​	​	​​	​	​	​	​	​	​	​	​​	​​	​​
​	​	​​	​	​	​	​​	​	​	The	following	ciphertext	has	been	encrypted	using	this	stream	cipher;	use	exhaustive	key	search	to	decrypt	it:	14	Classical	Cryptography	WRTCNRLDSAFARWKXFTXCZRNHNYPDTZUUKMPLUSOXNEUDO	KLXRMCBKGRCCURR	Answer:	The	encryption	and	decryption	rules	are	written	incorrectly.	They	should	be	as	follows:	​	​	​	​	​	​	​​​	​	and	​	​	​	​​​	​​​	The	key
is	​​,	and	the	decrypted	plaintext	is	the	following:	The	first	deposit	consisted	of	one	thousand	and	fourteen	pounds	of	gold.	2	Shannon’s	Theory	Exercises	2.1	Referring	to	Example	2.2,	determine	all	the	joint	and	conditional	probabilities,	​​​	​,	​​	​	and	​	​​,	where	​	​	​	​	​	​	​	and	+​	,	.	Answer:	The	probabilities	are	as	follows:	​	​	​	​	​	​	​	​	​	​	​	​​	​​	​	​	​	​	​	​	​​	​​	​	+	+	+	+	+	+	+	+	+	+	+	,	,	,	,	,	,	,
,	,	,	,	​​	​​​​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​​	​​	​​	​​	​	​​	​​	​​	​​	​​	​	​	​​	​​​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​​​​	​	​	​​	​	​	​​	​	​	​​	​	​	​​	​	​	​​	​	​	​​	​	​​	​​	​​	​​	​	​​	​​	​​	​​	​​	​	​​	​	2.2	Let	​	be	a	positive	integer.	A	Latin	square	of	order	​	is	an	​	​	array	of	the	integers	​​	​	​	​	​	​	such	that	every	one	of	the	​	integers	occurs	exactly	once	in	each	row	and	each	column	of	.	An	example	of	a	Latin	square	of	order	3	is	as	follows:	15	16	Shannon’s	Theory	1	2	3	3	1	2	2	3	1	Given	any	Latin
square	of	order	​,	we	can	define	a	related	cryptosystem.	Take	​​	​	​	​	​	​	.	For	​	​	​,	the	encryption	rule	​	is	defined	to	be	​	​	​​	​	.	(Hence	each	row	of	gives	rise	to	one	encryption	rule.)	Give	a	complete	proof	that	this	Latin	Square	Cryptosystem	achieves	perfect	secrecy	provided	that	every	key	is	used	with	equal	probability.	​​	​	​	​	​	​	,	there	exists	a	unique	key	​	​	such	that
Answer:	For	each	​​	​	​​	​	.	Therefore,	-	​​	​	​	​	​	​	for	all	.	For	any	​​	​	​	​	​	​	,	we	have	​	​	​	​	​	​	​	​	​​	​	​	​​	​	​	​	​	​​​	​​​	​​	​	​​​	​	​	​	​​​	​​	​​​	​​​	​​	​	​	​	​	​​​	​​	​	​	​	Then,	for	any	​​	​	​​​	​	​	​	​	​​,	we	compute	​​​	​​	​​	​​​	​	​	​	​​	​	Finally,	using	Bayes’	Theorem,	we	see	that	​​​	​​​	​	​​​	​​	for	all	​​	.	2.3	(a)	Prove	that	the	Affine	Cipher	achieves	perfect	secrecy	if	every	key	is	used	with	equal	probability	​	​​	.	​	Answer:	For	each	​​	​​,	and	for	each	​​	,	there	exists	a	unique	​	​​	​	​​
such	that	​​​	​	​	.	Also,	-	​​	​	​	​	​	​	for	all	.	For	any	​​	​	​	​	​	​	,	we	have	​	​	​	​	​​	​	​	​	​​	​​​	​​​	​​	​	​​​	​​​	​​	​	​	​​​	​	​£	​	​​	​	​	​	​​	​	​	​​​	​​	​	​	​	​	​​,	we	compute	​	​​​	​​	​​	​	​​	Then,	for	any	​​	​​​	​​	​	​£	​	​​	​	​	​	Finally,	using	Bayes’	Theorem,	we	see	that	​	​	​​	​	​	​​​	​​​	​	​​​	​​	​	Exercises	17	for	all	​​	.	(b)	More	generally,	suppose	we	are	given	a	probability	distribution	on	the	set	​	​	​​	​	​​​	​	​	​​​	Suppose	that	every	key	​	​	for	the	Affine	Cipher	is	used	with	probability	​	​	​	​​.	Prove
that	the	Affine	Cipher	achieves	perfect	secrecy	when	this	probability	distribution	is	defined	on	the	keyspace.	Answer:	The	question	is	stated	incorrectly:	The	probability	of	key	​	​	should	be	​	​	​.	​​	​	​	​	​	​	,	we	have	Proceeding	as	in	part	(a),	for	any	​	​	​	​​	​	Then,	for	any	​​	​	​	​​	​	​​​	​	​	​​	​	​​​	​​​	​​	​	​£	​​​	​​​	​​	​	​£	​	​	​​​	​​​	​​	​	​​	​	​	​	​	​	​​​	​​	​​​	​​	​​​	​​	​	​	​	​	​​,	we	compute	​​​	​​	​​	​	​	​£	​	​£	​	​	​​	​	​	​​	​	​	​​	​	​	​	​	​	Finally,	using	Bayes’	Theorem,	we	see
that	​​​	​​​	​	​​​	​​	for	all	​​	.	2.4	Suppose	a	cryptosystem	achieves	perfect	secrecy	for	a	particular	plaintext	probability	distribution.	Prove	that	perfect	secrecy	is	maintained	for	any	plaintext	probability	distribution.	Answer:	Let	​​​	​	​	​	​	​	​​​	be	a	probability	distribution	on	the	plaintext	space	​	​	​	​	​	​	​​	,	and	suppose	that	the	cryptosystem	achieves	perfect	secrecy	when	the
plaintext	is	chosen	using	this	plaintext	probability	distribution.	Let	​	​​​	​	​	​	​	​	​​​	be	an	arbitrary	probability	distribution	on	.	It	should	be	clear	that	​	​​	does	not	depend	on	the	plaintext	probability	distribution.	Because	the	perfect	secrecy	property	holds	with	respect	to	,	we	have	that	​	​	​​	​	​	​​	​​	​​	​	​​​	​​	​​	for	all	​	​	​,	​	​.	Therefore	it	holds	that	​	​​​	​	​​​	​	​​	​​​	​	​	​	​​	​	​​	​	​	​​​	​	18	Shannon’s	Theory	​	​,	​	​.
Now,	we	compute	​​	​​	​:	​	​​	​​	​	​​​	​	​​​	​	for	all	​	​​	​​​	​	​	​	​​	​	​	​​	​	​​​	​​​	​	​​	​​	​​	​	​	​	​​	​	​	​​​	​	​​​	​	​​	​​​	​	​	​	​	​	​	​	​​​	​	​	​	​​	​	​	​​	​​​	​	​	​​	​​​	​	​	​	​​​	​	​​​	​	​	​​​	​	​​​	​	​​​	​​	​​​	as	desired.	,	then	every	2.5	Prove	that	if	a	cryptosystem	has	perfect	secrecy	and	ciphertext	is	equally	probable.	Answer:	This	follows	from	the	proof	of	Theorem	2.4.	2.6	Suppose	that	and	​	are	two	ciphertext	elements	(i.e.,	binary	​-tuples)	in	the	Onetime	Pad	that	were	obtained	by
encrypting	plaintext	elements	​	and	​	​	,	respectively,	using	the	same	key,	.	Prove	that	​	​	​	​	​	​	​​​	.	Answer:	We	have	​	​	​​​	and	​	​​	​	​​​	.	Adding,	we	see	that	​	​	​	​	​	​​	​	​	​	​​	​​​	​	​	​	​​​	​​​	​	2.7	(a)	Construct	the	encryption	matrix	(as	defined	in	Example	2.3)	for	the	One-time	Pad	with	​	​.	Answer:	​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	​​​	(b)	For	any	positive	integer	​,	give	a	direct	proof
that	the	encryption	matrix	of	a	One-time	Pad	defined	over	​​​	is	a	Latin	square	of	order	​.	Answer:	This	is	a	misprint.	The	encryption	matrix	is	a	Latin	square	of	order	​	,	in	which	the	symbols	are	the	elements	of	the	group	​​​	.	​​​	.	We	have	that	​	​	if	and	only	Suppose	that	​​	​	​	if	​	​	(in	​	).	Given	and	,	we	can	solve	for	​	uniquely:	​	​	.	Therefore	every	row	of	the	encryption
matrix	contains	every	symbol	in	exactly	one	cell.	Given	​	and	,	we	can	solve	for	uniquely:	​	Exercises	19	​	​	.	Therefore	every	column	of	the	encryption	matrix	contains	every	symbol	in	exactly	one	cell.	​	​	,	and	​​​	​	​	for	2.8	Suppose	"	is	a	set	of	cardinality	​,	where	all	​	"	.	(a)	Find	a	prefix-free	encoding	of	"	,	say	​	,	such	that	!	​	​	​	​.	​	​	​	Encode	​	elements	of	"	as	strings	of
length	​,	and	encode	the	remaining	elements	as	strings	of	length	​	​	​.	HINT	​	Answer:	Let	#	be	the	set	of	all	binary	strings	of	length	​.	Let	.	#,	.	​.	Then,	for	each	string	#	.	,	construct	two	strings,	​	and	​,	and	call	the	resulting	set	of	​	​	strings	.​	.	Then	the	set	.	.	.​	is	a	set	of	​	strings	that	satisfies	the	prefix-free	property,	so	it	is	a	Huffman	Code.	We	can	define	a
Huffman	encoding	of	"	by	taking	​	to	be	any	bijection	from	"	to	.	.	It	is	now	straightforward	to	compute	!	​	:	​	!	​	​​​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​​	​	​	​	(b)	Illustrate	your	construction	for	​	​.	Compute	!	​	and	%	in	this	case.	Answer:	Here	we	have	​	​	and	​	.	The	binary	strings	of	length	are	​​,	​​,	​​	and	​​.	Suppose	we	take	.	​​​	​​	.	Then	we	form	.​	​​​​	​​​​	​​​​	​​​	,	and	.	​​​	​​​	​​​​	​​​​	​​​​	​​​	.	Here	we	have	!	​	​	​	​​	and	%	​​​	​	​	​​​.	​	​	2.9
Suppose	"	​	​​	'​	​	has	the	following	probability	distribution:	​​	,	​​​	​	​,	​'​	​	​,	​	​	​​​	and	​​​	​​​.	Use	Huffman’s	algorithm	to	find	the	optimal	prefix-free	encoding	of	"	.	Compare	the	length	of	this	encoding	to	%	.	Answer:	We	obtain	the	following	Huffman	encoding:	​	​	​	​​​	​	​​​	'	​​	​​	​​	Thus,	the	average	length	encoding	is	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	!	​	​​	​	​	​​​	​	​	​	​	​	​	​	​	​​	​	​​	The	entropy	is	%	​	​​​	​	​	​​​	​	​	​	​	​	​	​​	​	​​​	​	​​​	​	​	​	​​	​​	​​​	​	2.10	Prove	that
%	​	%	​%	.	Then	show	as	a	corollary	that	%	%	,	with	equality	if	and	only	if	and	are	independent.	​	20	Shannon’s	Theory	Answer:	First,	we	observe	that	​​	​	​​​​	​	​​​​	​	and	​​​	​	​​​​	​	​​​​	​​​​	​	​​	​	​​​​	​​​​	​	Therefore	%	​​​	​​	​	​	​	​	​​	​​	​​​​	​​	​	​​​​	​	​​​	​	​​​​	​	​​	​​​​	​	​​​	​	​​​​	​	%	​​	​	​	%	​​	​	​	%	​​	​	​	%	​​	​	​​	​	​	​	​	​	​​​​	​	​​​​	​​	​	​​	​​​​	​​	​	​​​	​	​​	​	​​	​	​	​​	​	​​​	​	​	​​​​	​	​	%	​​​	as	desired.	Theorem	2.7	says	that	%	​	%	​	%	,	with	equality	if	and	only	if	and	are	independent.	Therefore	we	have	​	​​	​	​	​	​	%	​	​	%	​
%	​​	​	%	​	​	%	​​​​​	​	%	​​​​.	Further	equality	occurs	if	and	only	if	​	and	which	implies	that	%	are	independent.	​	​​	%	.	2.11	Prove	that	a	cryptosystem	has	perfect	secrecy	if	and	only	if	%	%	if	and	only	if	Answer:	From	Exercise	2.9,	we	have	that	%	and	are	independent.	This	is	true	if	and	only	if	​​​	​	​​​	​	​	for	all	​	and	all	.	Writing	​​​	​	​​	​	​	​,	the	condition	becomes	​​	​	​	​	​​​	​	​,	which	simplifies
to	​​	​	​​​.	This	is	precisely	the	perfect	secrecy	condition.	​	​​	​	​	​	​​	​	​	​​	​	​	​	​	​	​	​	​​​	​​	​	​	​	%	.	(Intuitively,	this	result	says	2.12	Prove	that,	in	any	cryptosystem,	%	that,	given	a	ciphertext,	the	opponent’s	uncertainty	about	the	key	is	at	least	as	great	as	his	uncertainty	about	the	plaintext.)	Answer:	Theorem	2.10	says	that	%	​​​	%	​	​	%	%	​​​	Exercises	21	​​	as	follows:	%	​​	%	​	​	%	​	%	​​	​	​	%	​​	​	​	%
​	​	%	​​	​	​	%	​	%	​​	%	​	​	%	​	​	%	%	​	%	​​​​​	Consider	a	cryptosystem	in	which	​	​	​	​​	'​,	​	​	​	​	​	​	and	​	​​​	​	​​	​.	Suppose	the	encryption	matrix	is	as	follows:	Then	we	compute	a	bound	on	%	2.13	​	​	​	​	​	​	'	​	​	Given	that	keys	are	chosen	equiprobably,	and	the	plaintext	probability	distribution	​	​	​	,	​​​	​	​,	​'​	​	​,	compute	%	,	%	,	%	,	is	%	and	%	.	Answer:	From	the	given	probability	distributions	on	and	,
we	have	%	​​​​​	and	%	​​	​​.	We	next	compute	the	probability	distribution	on	to	be	​​​	​​,	​	​	​	​​,	​​​	​	​​	and	​	​	​	​​.	Then	%	​​​​​.	Next,	we	compute	​	​​​	​	​	​​	​	​	​	​	​	​	From	this,	we	compute	%	%	​​​​​.	Finally,	%	​	​​​​​​	​	​	​	​	​	​	​	​	​	​	​	'	​	​	​	​	​	​	​​	​​​​​,	%	​	​​	​	​​,	%	​​	​​	​​	and	​​	​​	​	​​​	​	​​​	​	​​​	​​​​​​	​​	​​​	​​	​​​	​​​​	​​​​	​	Compute	%	​​​	and	%	​​	​	​	for	the	Affine	Cipher.	%	​	​​​,	we	first	compute	​​​​	​	for	all	​	​	​	and	all	​	​:	​	​	​	​	​	%	​​​	%	​	​	%	In	order	to	compute	%	2.14	​	Answer:	Note:	here,
you	should	assume	that	keys	are	used	equiprobably,	and	that	​​​	​	​​	the	plaintext	probability	distribution	is	equiprobable.	Then	%	and	%	​	​​​	​	​	.	2.15	Consider	a	Vigen`ere	Cipher	with	keyword	length	​.	Show	that	the	unicity	distance	is	​	/​	,	where	/​	is	the	redundancy	of	the	underlying	language.	(This	result	is	interpreted	as	follows.	If	​​	denotes	the	number	of
alphabetic	characters	being	encrypted,	then	the	“length”	of	the	plaintext	is	​	​	​,	since	each	plaintext	element	consists	of	​	alphabetic	characters.	So,	a	unicity	distance	of	​	/	​	corresponds	to	a	plaintext	consisting	of	​	/	​	alphabetic	characters.)	​	​	,	so	the	estimate	for	Answer:	In	the	Vigen`ere	Cipher,	we	have	​​​	​​	​	​​​	​	​	22	Shannon’s	Theory	the	unicity	distance	is	​​​​	​	​	/​	​​​	​	​​​
​	/​	​	2.16	Show	that	the	unicity	distance	of	the	Hill	Cipher	(with	an	​	​	encryption	matrix)	is	less	than	​	/	​	.	(Note	that	the	number	of	alphabetic	characters	in	a	plaintext	of	this	length	is	​​	/​	.)	Answer:	The	number	of	​	​	matrices	with	entries	from	​​	is	​​	,	but	not	​	​	​	.	Also,	​​	.	The	all	of	these	matrices	are	invertible.	Therefore	estimate	for	the	unicity	distance	is	​​​	​	​	​	/​	​​​​	​	​​​	​	​	​​	​​​​	​
​	​​	​	​​​	​	​​/​	/​	​	2.17	A	Substitution	Cipher	over	a	plaintext	space	of	size	​	has	​	formula	gives	the	following	estimate	for	​​:	​	​	​	​​	​​	​	​​	​	​	​	​​	Stirling’s	(a)	Using	Stirling’s	formula,	derive	an	estimate	of	the	unicity	distance	of	the	Substitution	Cipher.	Answer:	We	have	that	​​​	​	​	​	​	​​​​	​​	​​	​	​	​​	​	​	​​​	​	​	where	'	​	'​	are	small	positive	constants.	​​​	​	for	the	unicity	distance	is	​	​​	​	'	​	​	​	​​​	​	​	​	'	​	​​​	​​​​	​	​	'​	​	​​​	​​​​	​,	so	an
estimate	​	​	​	​​	(b)	Let	​	​	be	an	integer.	The	​-gram	Substitution	Cipher	is	the	Substitution	Cipher	where	the	plaintext	(and	ciphertext)	spaces	consist	of	all	​	​	​grams.	Estimate	the	unicity	distance	of	the	​-gram	Substitution	Cipher	if	/​	​​	​.	Answer:	To	simplify	things,	we	will	use	the	estimate	​​​	​	​​	​	​​​	​	​.	Setting	​	​​	,	we	get	​	​​​​	​	​​​​	​	​	​	​​	​​​​	​​	​	​​​	​	​​​	​​	​	​​	​​​	​	​​​,	so	the	estimate	for	the	unicity
distance	is	​​​	​	​​​	​​	​​	​​​​	​​​	​	​​​​	​​	​	2.18	Prove	that	the	Shift	Cipher	is	idempotent.	Answer:	Note:	in	this	question,	you	should	assume	that	keys	are	chosen	equiprobably.	A	key	in	the	Shift	Cipher	is	an	element	​​,	and	the	corresponding	encryption	rule	is	​	​	​​	​​​	​	for	all	​	​​.	It	is	clear	that	​	​​	​	​	​	​	​	​​​	​,	so	the	composition	of	two	encryption	rules,	with	keys	and	​	,	is	another	encryption	rule
in	the	Shift	Cipher,	namely	the	one	with	key	​	​	​​​	​.	We	need	to	show	that	the	probability	of	each	key	in	the	product	cipher	is	​	​.	​	​	Exercises	23	This	is	shown	as	follows:	​​​	​	​​	​​​	​	​	​	​​​​	​	​	​	​	​	​	​	​​​	​	​	​​​	​	​	​​​	​​	​​​	​	​	​​​	​	​	​​​	​​	​​​​	​	​	​	​	​	​​	​	​	​	as	desired.	2.19	Suppose	​	is	the	Shift	Cipher	(with	equiprobable	keys,	as	usual)	and	​	​	is	the	Shift	Cipher	where	keys	are	chosen	with	respect	to	some	probability
distribution	​​	(which	need	not	be	equiprobable).	Prove	that	​	​​	​	.	Answer:	In	this	question,	the	probability	computation	in	the	previous	exercise	should	be	modified,	as	follows:	​​​	​	​​	​​​	​	​	​	​​​​	​	​	​	​	​	​	​	​	​	​	​​​	​	​	​​​	​	​	​​​	​​	​	​​​	​​	​​​	​	​​​​	​	​	​​​​	​	​	​	​	​	​	​​​​	​	​	​	​	​	2.20	Suppose	​	and	​​	are	Vigen`ere	Ciphers	with	keyword	lengths	​	​	​​	respectively,	where	​	​	​​	.	(a)	If	​​	​	​	,	then	show	that	​	​	​	​	.	Answer:	Note:	you	should	assume
that	all	the	cryptosystems	in	this	question	have	equiprobable	keys.	Suppose	that	​	​	has	keyword	and	​	​	​	​	​	​	​	​​	has	keyword	​	​	0	​	​	​	​	​	​	​​​	​	Then	​	has	keyword	​	​​	​	​	​	​	​	​​	​​​	​	​​	​​	​	​	​	​	​	​​​	​​​	​	​	​	​	​	​​​	​​​	​	Clearly	this	is	a	keyword	of	length	​	.	It	remains	to	show	that	the	probability	of	each	keyword	of	length	​	occurring	in	the	product	cipher	is	​	​	​​	.	This	is	not	difficult,	and	it	is	1	​	​	​	​	​	1​​	and	any	based
on	the	following	observation:	for	any	​	​	​	​	​	​	​​	,	there	exist	a	unique	0	such	that	​	​	​	,	namely	0	1	​	​	​	​	​	​	1​	​​	​	1​	​	​	​	​	​	​	1​​	​​	​	​	​	​	​	1​​	​​	​	24	Shannon’s	Theory	From	this,	the	desired	result	follows	easily.	(b)	One	might	try	to	generalize	the	previous	result	by	conjecturing	that	​	​	,	where	​	is	the	Vigen`ere	Cipher	with	keyword	length	​​​	​	​	​​	.	Prove	that	this	conjecture	is	false.	​	​	​	​	​​	​	​​​	​​	,
then	the	number	of	keys	in	the	product	cryp​	​	is	less	than	the	number	of	keys	in	​	​	.	Answer:	The	product	cipher	​	​	​	has	​	​​	​	keys.	However,	​	​	​​​​​	​	HINT	If	​	tosystem	​	​	has	​	keys.	We	have	that	​	​	​​	​	​	because	​	​	​​	.	Also,	​​​	​	​	​​	​	because	​	​	​​​	​​	.	Therefore	​	​	​​	​	​​​	​	​	​​	,	which	completes	the	proof	(following	the	hint).	​​	3	Block	Ciphers	and	the	Advanced	Encryption	Standard	Exercises	3.1
Let	be	the	output	of	Algorithm	3.1	on	input	​,	where	​	​	and	​​	are	defined	as	in	Example	3.1.	In	other	words,	​	​	SPN	​​	​​	​	​​	​	​	​	​	​	​	​​	​	where	​	​	​	​	​	​​	is	the	key	schedule.	Find	a	substitution	​	​£	and	a	permutation	​​	£	such	that	​	​	​	SPN	​	​​£	​	​​	£	​	​​	​	​	​	​	​	​	Answer:	Note:	Each	of	the	round	keys	in	the	decryption	algorithm	must	be	permuted	in	a	suitable	way.	The	decryption	algorithm	is
as	follows:	​	​	SPN	​	​​	​	​​	​	​​	​​	​	​	​	​	​	​​	​	​	3.2	Prove	that	decryption	in	a	Feistel	cipher	can	be	done	by	applying	the	encryption	algorithm	to	the	ciphertext,	with	the	key	schedule	reversed.	Answer:	DES	encryption	proceeds	as	follows:	​	/​	​​	​	/​	/	​	​	​	/​	​	​	/	/​	​	​	/	​	​	..	.	​	/	​	/	​	​	​	/	​	​	​	​	/	​	/	​	​	​	​	/	​	​	​	​​	/	​	​	​	Now,	we	proceed	to	decrypt	the	ciphertext	in	a	step-by-step	fashion.	We	use	prime	25	26
Block	Ciphers	and	the	Advanced	Encryption	Standard	markings	(​	)	to	denote	the	left	and	right	halves	of	the	partially	decrypted	ciphertext:	​	​	/​	​	​​	/	​	​	​	/​	​	​	/	​	/​	​	​	​	​	/​	​	​	​	/	​	​	​	/	​	​	​	​	​	/​	​	/	​	/​	​	​	​	​	/​	​	​	/	​	​	​	/	​	​	​	..	.	​	​	/​	​	​	/	/​	​	​	​	​	​	/​	​	​	​	/​	​	​	/	​	​	​	​	/​	​	/​	/​	​	​	​	​	​	/​	​	​	/	​	​	/​	​	​​	/​	​	​	​	​​	​	/​	​​	​	​	​	In	general,	we	have	​	​	/	​	​	and	/​	​	​	​	for	​	​	​​.	This	can	be	proven	formally	by	induction,	if	desired.	3.3	Let	DES	​​	represent	the
encryption	of	plaintext	​	with	key	using	the	DES	cryptosystem.	Suppose	DES	​​	and	​	DES	'	​​​	'	,	where	'	denotes	the	bitwise	complement	of	its	argument.	Prove	that	​	'	(i.e.,	if	we	complement	the	plaintext	and	the	key,	then	the	ciphertext	is	also	complemented).	Note	that	this	can	be	proved	using	only	the	“high-level”	description	of	DES	—	the	actual	structure
of	S-boxes	and	other	components	of	the	system	are	irrelevant.	Answer:	The	key	fact	is	that	​	'	​​​	'	0	​	​​	0	,	which	is	easily	seen	from	the	description	of	​	.	Then,	as	usual,	let	the	partial	encryptions	of	DES	​​	be	​	​​.	Then	it	is	easy	to	see	that	the	partial	encryptions	of	denoted	​	/​	,	​	DES	'	​​​	'	are	'	​	'	/​	,	​	​	​​.	This	can	be	proven	formally	by	induction,	if	desired.	3.4	Before
the	AES	was	developed,	it	was	suggested	to	increase	the	security	of	DES	by	using	the	product	cipher	DES	DES,	as	discussed	in	Section	2.7.	This	product	cipher	uses	two	​​-bit	keys.	This	exercise	considers	known-plaintext	attacks	on	product	ciphers.	In	general,	suppose	that	we	take	the	product	of	any	endomorphic	cipher	​	​	​	​	with	itself.	Further,	suppose
that	​​	​	​	and	​​	​	​	.	Now,	assume	we	have	several	plaintext-ciphertext	pairs	for	the	product	cipher	​	,	say	​	​	,	​	​	​	,	​​	​	​	,	all	of	which	are	obtained	using	the	same	unknown	key,	​	​​.	​	​	​	​	​	​	​	​	​	​	​	​	​​	​​	​	​	​	(a)	Prove	that	​​	​​	​	​	for	all	​,	​	​	!.	Give	a	heuristic	argument	that	the	expected	number	of	keys	​	​	such	that	​​	​​	​	​	for	all	​,	​	​	!,	is	roughly	​​	​​	.	​	!,	we	have	that	​	​	​​	​​	.	Denote	Answer:	For	​	​​	​​	​​	.	Then	​	​
​​	,	so	​​	​​	​​	​	​	,	as	desired.	​,	then	it	seems	Suppose	we	fix	​	and	choose	at	random.	If	​	​	​​	​	​	​	​	for	all	​	.	Similarly,	reasonable	to	hypothesisze	that	if	we	fix	and	choose	​	at	random,	it	seems	reasonable	to	hypothesisze	that	​	​	​	​	​	for	all	​	.	Therefore,	for	fixed	​	and	,	we	would	​	​	​​	​​​	​	.	estimate	that	Now	given	​	​	​	​	​	​​	and	​	​	​	​	​	​	,	we	would	estimate	(assuming	inde-	​	​	​	​	​	​	​	Exercises	27
pendence)	that	​​	​	​	​​	​​	​	​	​	​	​	!​	​​	​​	​	Since	there	are	possible	pairs	​	​	,	the	expected	number	or	pairs	that	satisfy	the	given	conditions	is	​​	​​	​​	​​	.	(Note	that	this	is	a	heuristic	estimate,	and	not	a	proof.)	(b)	Assume	that	!	​	​.	A	time-memory	trade-off	can	be	used	to	compute	the	unknown	key	​	​	.	We	compute	two	lists,	each	containing	​	items,	where	each	item	contains	an	!-
tuple	of	elements	of	as	well	as	an	element	of	.	If	the	two	lists	are	sorted,	then	a	common	!-tuple	can	be	identified	by	means	of	a	linear	search	through	each	of	the	two	lists.	Show	that	this	algorithm	requires	​	​	!	​	​​	bits	of	memory	and	!	​	encryptions	and/or	decryptions.	Answer:	Note	that	the	storage	requirement	is	​	!​	​	​	bits.	Suppose	elements	​	​	​	​	​	​​	and	​	​	​	​	​	​	are
given,	where	​​	​​	​	​	for	all	​,	​	​	!.	We	are	trying	to	determine	the	pair	​	​​.	For	every	binary	​-tuple,	,	we	construct	the	tuple	​	​	​	​	​	​	​	​	​	​	​	​​	​	​	​	Call	the	resulting	list	of	​	tuples	.	Then,	for	every	binary	​-tuple,	,	we	construct	the	tuple	​	​	​	​	​	​	​	​	​	​	​	Call	the	resulting	list	of	​	tuples	​	.	It	takes	!	​	encryptions	to	construct	,	and	!	​	decryptions	to	construct	and	​	requires	!​	​	​	bits	of	storage,	so
the	total	​	.	Each	tuple	in	and	​	is	​	!​	​	​	bits.	storage	requirement	for	and	​	lexicographically	by	the	values	of	the	first	!	We	can	sort	the	co-ordinates	of	each	tuple.	Then	we	can	easily	identify	all	tuples	​	​	​	​	​	​	​	and	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​​	​	2	​	​	​	​​	such	that	​	​​	for	​	​	!.	This	will	happen	when	​	and	2	​	,	but	it	may	happen	for	other	pairs	​​	2	as	well.	However,	we	argued	in	part	(a)	that
the	expected	number	of	pairs	for	which	we	find	a	!​,	so	​​	​​	​	“match”	is	​​	​​	.	We	are	now	assuming	that	​	and	we	do	not	expect	many	matches	to	occur.	(Hopefully,	there	is	only	one	match,	the	correct	one.)	(c)	Show	that	the	memory	requirement	of	the	attack	can	be	reduced	by	a	factor	of	​	if	the	total	number	of	encryptions	is	increased	by	a	factor	of	​	.	​	​	Break
the	problem	up	into	​​	subcases,	each	of	which	is	specified	by	simultaneously	fixing	​	bits	of	and	​	bits	of	​	.	HINT	Answer:	Suppose	that	​	and	​​	are	binary	​-tuples	(note	that	there	are	​​	choices	for	the	pair	​	​	​​	).	For	a	given	pair	​	​	​​	,	we	can	construct	the	and	​	in	which	we	require	that	the	last	​	bits	of	each	in	are	lists	specified	by	​	,	and	the	last	​	bits	of	each	in	​	are
specified	by	​	​	.	This	reduces	the	memory	requirement	of	each	list	by	a	factor	of	​	,	and	the	time	​	​	​	​	28	Block	Ciphers	and	the	Advanced	Encryption	Standard	​	​	​	required	to	construct	and	​	(for	a	given	pair	​	​	​​	)	is	also	reduced	by	a	factor	of	​	.	and	​	exactly	as	before.	However,	we	now	We	search	for	a	match	in	have	to	repeat	this	for	every	possible	pair	​	​	​​	in
order	to	be	guaranteed	that	we	will	find	a	match.	We	have	​​	cases	to	consider,	each	of	which	is	faster	by	a	factor	of	​	.	The	total	time	is	therefore	increased	by	a	factor	of	​	.	3.5	Suppose	that	we	have	the	following	​	​-bit	AES	key,	given	in	hexadecimal	notation:	​	​​​​​​​	​​​	​​​​	​​​​​	​	​	Construct	the	complete	key	schedule	arising	from	this	key.	Answer:	This	example	is	worked
out	in	detail,	starting	on	page	27	of	the	official	FIPS	197	description,	which	can	be	found	at	the	following	web	page:	csrc.nist.gov/publications/fips/fips197/fips-197.pdf	3.6	Compute	the	encryption	of	the	following	plaintext	(given	in	hexadecimal	notation)	using	the	​​-round	AES	:	​	​​	​​​​​​​​​​	​​​​	​​	​​​​​​​​	Use	the	​	​-bit	key	from	the	previous	exercise.	Answer:	This	example	is
worked	out	in	detail,	starting	on	page	33	of	the	official	FIPS	197	description,	which	can	be	found	at	the	following	web	page:	csrc.nist.gov/publications/fips/fips197/fips-197.pdf	3.7	Suppose	a	sequence	of	plaintext	blocks,	​	​​	,	yields	the	ciphertext	sequence	​	.	Suppose	that	one	ciphertext	block,	say	​	,	is	transmitted	incorrectly	(i.e.,	some	​’s	are	changed	to
​’s	and	vice	versa).	Show	that	the	number	of	plaintext	blocks	that	will	be	decrypted	incorrectly	is	equal	to	one	if	ECB	or	OFB	modes	are	used	for	encryption;	and	equal	to	two	if	CBC	or	CFB	modes	are	used.	Answer:	It	is	immediate	that	there	is	only	one	incorrectly	decrypted	ciphertext	block	when	ECB	or	OFB	modes	are	used	for	encryption.	Suppose
that	CBC	mode	is	used,	and	the	ciphertext	block	​	is	transmitted	incorrectly	as	​​	.	​	​	​	​	​	​	​​	are	decrypted	correctly.	The	next	two	ciphertext	blocks	are	decrypted	incorrectly:	​​​	​	​​	​	​	​​​	​	​	​	​​	​	and	Then	all	subsequent	ciphertext	blocks	are	decrypted	correctly.	Suppose	that	CFB	mode	is	used,	and	the	ciphertext	block	​	is	transmitted	incorrectly	as	​​	.	​	​	​	​	​	​	​​	are	decrypted
correctly.	The	next	two	ciphertext	blocks	are	decrypted	incorrectly:	​​​	​	​	​​	​	​	​​	​	​​	​	​	​	and	Then	all	subsequent	ciphertext	blocks	are	decrypted	correctly.	3.8	The	purpose	of	this	question	is	to	investigate	a	time-memory	trade-off	for	a	chosen	plaintext	attack	on	a	certain	type	of	cipher.	Suppose	we	have	a	cryptosystem	in	which	,	which	attains	perfect	secrecy.
Then	it	must	be	the	case	that	​	​	Exercises	29	​	​	​	​	​	​​	​	implies	.	Denote	#	​	​	​	​	​	​	.	Let	​	be	a	#	by	the	rule	​	​	​​.	Define	fixed	plaintext.	Define	the	function	​	​	#	a	directed	graph	3	having	vertex	set	#	,	in	which	the	edge	set	consists	of	all	the	directed	edges	of	the	form	​	​	​	​	,	​	​	,	.	​	​	Algorithm	3.1:	T	IME	-	MEMORY	TRADE	-	OFF	(​)	​	​	​​​​​	​	false	​	​	​	while​	if	​​	​	​	for	some	​	and	not	​​​​​	​	​
then	​	​	​	​​	do	​	​​​​​	​	true	​	​	else	​​​	(a)	Prove	that	3	consists	of	the	union	of	disjoint	directed	cycles.	Answer:	​	​	​	implies	​	​	​¼	​​,	which	implies	​	(as	remarked	above).	Therefore	​	is	a	permutation	of	the	set	#	,	and	its	representation	as	a	directed	graph	is	a	union	of	disjoint	directed	cycles.	(b)	Let	$	be	a	desired	time	parameter.	Suppose	we	have	a	set	of	elements	.	​	​	​	​	​	​	​​	#
such	that,	for	every	element	​	#	,	either	​	is	contained	in	a	cycle	of	length	at	most	$	,	or	there	exists	an	element	​	​	​	such	that	the	distance	from	​	to	​​	(in	3)	is	at	most	$	.	Prove	that	there	exists	such	a	set	.	such	that	,	​	​​	​	​.	​	​	​	​	$	​	​	so	.	is	4	,	$	.	​-	Answer:	Let	the	cycles	in	$	be	denoted	-	​	-​	​	​	​	​	​	-​	.	Note	that	​	,	.	It	is	easy	to	construct	a	set	.	,​satisfying	the	desired
properties,	such	that	​	every	cycle	-	​	contains	exactly	​​​​	​	points	of	.	.	It	can	be	verified	that	​	​	for	all	​	​.	Hence	we	have	that	​	​	​	​​	​	​	​	​	​-​	​	​	​	​	​-​	​	,	​	​	$	$	$	​	​	.	,	define	​	​​	to	be	the	element	​	such	that	​	​	​	​​	,	​	(c)	For	each	​	​	where	​	​	is	the	function	that	consists	of	$	iterations	of	​.	Construct	a	table	"	consisting	of	the	ordered	pairs	​	​	​	​	​	​​	,	sorted	with	respect	to	their	first	coordinates.
A	pseudo-code	description	of	an	algorithm	to	find	,	given	​	​​,	is	presented.	Prove	that	this	algorithm	finds	in	at	most	$	steps.	(Hence	the	time-memory	trade-off	is	4	,	.)	Answer:	Note:	The	input	to	this	algorithm	should	be	rather	than	​.	The	algorithm	requires	at	most	$	iterations	of	the	while	loop	to	find	​​	,	and	then	at	most	$	further	iterations	until	​	​	.
Therefore	the	total	number	of	iterations	is	4	$	.	Each	iteration	requires	time	4	​	​	4	​​​	,	(assuming	we	do	a	binary	search	of	the	​	​	’s),	so	the	total	time	is	4	$	​​​	,	.	30	Block	Ciphers	and	the	Advanced	Encryption	Standard	The	memory	requirement	is	4	,	​​​	,	$	bits.	Therefore	the	product	of	time	and	memory	is	4	,	​​​	,	​	.	If	we	ignore	the	logarithmic	factor	(as	is	usually
done	in	analyses	of	this	type),	the	product	is	4	,	.	(d)	Describe	a	pseudo-code	algorithm	to	construct	the	desired	set	.	in	time	4	,	$	without	using	an	array	of	size	,	.	Answer:	We	construct	.	,	as	well	as	the	set	"	of	ordered	pairs	of	the	form	​​	​	​	​	,	as	follows:	Algorithm:	C	ONSTRUCT	X	AND	Z	(​)	.	​​	​	​	​	to	,	for	​	​​​​	​	​	​	​​	​	​	​	​	​	​	​	​	​	​	​	​	for	​	​	​	​	to	$	​	​	​	​	​	​	​	​	​	do	​	​	.	​	if	then	​	​​​​	​	​	​	!​	"​	​	​	​	if	​​​​	​	​
do	​​#​	​	​	​	!​	"​	​	​	​	while​not	​​#​	​	​	​	​	​	​	​	​	​.	​	.	​	​	​	​	​	​	​	​	"	​	"	​	​	​	​	​	​	​	​	​	​	​	​	​	then	​	​	​	​	do	for	​	​	​	​	to	$	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	do	if	​	​	.	​	​	​	then	​​#​	​	​	​	​​	​	​	​	​	​	​	​​	​	​​	​	​​	​	​​	3.9	Suppose	that	​	​	and	​	are	independent	discrete	random	variables	defined	on	the	set	​​	​	.	Let	5​	denote	the	bias	of	​	,	for	​	​​	​	​.	Prove	that	​	and	​	​	are	independent	if	and	only	if	5	​,	5​	​	or	5​	​	.	Answer:	​	has	bias	5	5​	and	​	​	has	bias	5	​	5​	.	Suppose	that	​	and	​	​	are
independent.	Then	the	bias	of	​	​	​	would	be	5	5​	5​	5​	.	However,	​	​	​	​​	​	​​	​	​​	​	​	​​	​	​​	​	​​	​	​​	​	​	​​	has	bias	5	5​.	Therefore	5	5​	​	5​	5	5​	​	This	implies	that	5	​,	5​	​	or	5​	​	.	Conversely,	suppose	that	5	​,	5​	​	or	5​	​	.	The	two	random	variables	​	and	​	​	are	independent	if	and	only	if	​	​​	​	​​	​​	​	​​​	and	​​	​​​	​​​	​​​	​​​	​	​​​​	​​​	​​	Exercises	31	for	​	​	​	​​​	​​.	These	four	conditions	are	as	follows:	​	​​	​​	​	​	​	​​	​	​	​	​​	​	​​	​	​	​	​	​	​​	​​	​​	​​	​	​	​	​	​​	​​	​	​​	​	​	​	​​	​​	​​	​	​	​​	​	​	​​	​	​​	​	​​	​​	​	​	​​	​​	​	​	​	​	​​	​	​	​	​​	​	​	​	​​	​	​	​	​	​	​
​​	​	​	​	​​	​​	​​	​	​	​	​​	​	​​	​	​​	​​	​	​​	​	and	​​	​	​​	​​	​	​​	​	​	​​	​​	​	It	is	straightforward	to	verify	that	these	four	conditions	are	satisfied	when	​	​	,	when	​​	​	,	when	​​	​	and	when	​	​	​.	3.10	For	the	each	of	eight	DES	S-boxes,	compute	the	bias	of	the	random	variable	​​	​	​	​	​​	​	​​	​	​​	​	(Note	that	these	biases	are	all	relatively	large	in	absolute	value.)	Answer:	The	biases	for	&	​	​	​	​	​	&​	are	(respectively)	​​	​	​​	​	​	​​	​	​​	​	​	​	​	​	​	​	and	​	​	​	​	​	​	​	​	​
3.11	The	DES	S-box	&	​	has	some	unusual	properties:	(a)	Prove	that	the	second	row	of	&	​	can	be	obtained	from	the	first	row	by	means	of	the	following	mapping:	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​​	​​	​​	​​​	where	the	entries	are	represented	as	binary	strings.	Answer:	This	is	a	straghtforward	verification.	(b)	Show	that	any	row	of	&	​	can	be	transformed	into	any	other	row	by	a	similar
type	of	operation.	Answer:	The	third	row	can	be	transformed	into	the	fourth	row	by	the	same	mapping	used	in	part	(a).	To	transform	the	first	row	(row	​​	​​)	into	the	fourth	row	(row	​​	​​),	the	following	operations	are	performed.	i.	Let	the	entry	in	column	'	​	'​	​	'​	​	'​	of	row	​​	​	be	​	​	​	​	​	​	,	where	all	vectors	have	entries	​	and	​.	ii.	Compute	​	​	​	​	​	​	​	​​	​​	​​	​​.	iii.	The	result	is	the	entry
in	column	'	​	'​	​	'​	​	'​	​	​​	​​	​​	​	of	row	​​	​​.	By	composing	these	transformations,	any	row	of	&	​	can	be	transformed	into	any	other	row.	3.12	Suppose	that	​	​	​	​​	​	​	​​	​	​	is	an	S-box.	Prove	the	following	facts	about	the	function	,​	.	(a)	,​	​​	​	​	.	Answer:	This	is	trivial.	​	​	​	​	32	Block	Ciphers	and	the	Advanced	Encryption	Standard	​	​	(b)	,​	​	​	​	​	for	all	integers	such	that	​	​	​.	​	for	all	integers	such
Answer:	Note:	This	should	read	“,	​	​	​	​	​”.	that	​	​	​​	​	​​	,	​​	​	​	​	​	​​,	there	are	exactly	​	bitstrings	​	For	​​	​	​	such	that	​	​​​	.	​	​​	​	​,	it	holds	that	(c)	For	all	integers	such	that	​	​	​​	​	​	​	​	​	​​	​	​	​	​	​	,​	​	​	​​	​	​	​	Answer:	Note:	The	first	line	should	read	“For	all	integers	​	such	that	​	​,”.	​	​​	​	​​​	determined.	Suppose	​	is	fixed;	then	​	​	​	and	'	​	​is	​​​	'	If	​	​,	then	there	are	​	choices	for	such	that	​	​	​	choices	for	such	(by	part
(b)).	If	​	​	,	then	there	are	either	​	or	​	that	​	​​	​​​	'	(by	part	(a),	depending	on	whether	'	​	or	​,	respectively).	Therefore	it	follows	that	​	​	​	​	​	​​	​	,​	​	​	​	​	​	​	​	or	​	​​	​	​	(d)	It	holds	that	​	​	​​	​​	​	​	​	​	,​	​	​	​	​	​	​​	​	​	​​	​	​	​	​​	Answer:	If	​	​,	then	there	are	​	choices	for	for	each	​	(by	part	(c)).	​	​	​	​	quadruples	​	​​	​​	with	​	​	Therefore​	we	obtain​	such	that	​	​	​​	​	​​​	​.	​	​	Now	we	consider	​	​.	Define	​	​​	​​	​	​	​	​	​​.	If	​	​,	then	all	possible	and	​
work,	so	the	number	of	quadruples	​	​​	​	​​	​	is	​	​	.	If	​	​,	then	for	each	,	there	are	​	choices	for	​,	and	the	number	of	quadruples	​	​​	​	​​	​	is	​	​	.	In	total,	the	number	of	quadruples	is	​	​	​	​	​	​​​	​	​	or	​	​	​	​​	or	​	​​	​	​	​	​	​	​	​	​	​	​	for	all	​	​​​	​​	.	Prove	the	following	facts	about	the	function	,	​	for	a	balanced	3.13	An	S-box	​	​	​	​​	​	​	​​	​	​	is	said	to	be	balanced	if	​​	​	​	S-box.	(a)	,​	​​	​	​	​	for	all	integers	​	such	that	​	​	​	​.	Answer:
Note:	This	should	read	“,	​	​​	​	​	for	all	integers	​	such	that	​	​	​	​	​”.	​	​	​​​	​.	For	When	​	​,	there	are	​	’s	such	that	​	​	​	​	​’s	such	that	​	​	​	.	Therefore,	each	such	,	there	are	exactly	,​	​​	​	​	​	​	​	.	​	​,	it	holds	that	(b)	For	all	integers	such	that	​	​	​	​	​	​	​​	​	​	​	​	,​	​	​	​	​	​	​	​	​	​	​	Exercises	33	​	​	where	​	is	an	integer	such	that	​	​	​	​	.	​’s	such	that	For	Answer:	When	​,	thre	are	​	​	​	​	​​	​​.	.	Thus	​​	​	each	such	​,	there	are	​	​’s	such
that	​	​​	​​​	​	​	​	we	​	obtain	​	triples	​​	​​	with	​	such	that	​	​​	​	​​	​	​​​	​.	Now	consider	​.	Define	​	​	"​	​​	​	​​	​	​	​	​	​	​	​	​	​	​	​​	​​​	​	​	​	.	For	each	​	​	and	denote	​	"	​	​	.	Note	that	"	​	and	for	​​	​	​​	​	​​​	​.	on	the	other	hand,	if	​	every	​,	it	holds	that	​	​​	​	​​	​	"​	,	then	the	condition	holds	.	Hence,	we	get	​	​	triples	​	for	no	​​	​​	​​	​	with	​	such	that	​​	​	​​​	​.	Hence,	​	​​	​	​	​	​	​	,	where	​	​	​	​	.	the	total	number	of	triples	is	​	​	3.14	Suppose	that	the	S-box	of
Example	3.1	is	replaced	by	the	S-box	defined	by	the	following	substitution	​​¼	:	​	​	​	​	​	​	​	​	​	2	-	+	6	​	​​¼	​	​	​	-	​	​	+	​	​	6	​	2	​	​	(a)	Compute	the	table	of	values	,	​	for	this	S-box.	Answer:	The	table	is	as	follows:	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	(b)	Find
a	linear	approximation	using	three	active	S-boxes,	and	use	the	piling-up	lemma	to	estimate	the	bias	of	the	random	variable	​	​	​	​	​	​​	​	Answer:	The	approximation	incorporates	the	following	three	active	S-boxes:	In	&​	,	the	random	variable	​	​	has	bias	​	​	has	bias	​	In	&	​	,	the	random	variable	​	​​	​	​	In	&	​	,	the	random	variable	​	​	​	has	bias	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	34
Block	Ciphers	and	the	Advanced	Encryption	Standard	Using	the	piling-up	lemma,	the	bias	of	the	random	variable	is	estimated	to	be	​	​​.	Now,	use	the	following	relations:	​	​	​	​	​	​	​​​	​	​​	​	​	​​​	​	​	​	​​	​	​	​	​​	​​	​​	​	​​​	to	show	that	​	​	​	​	​	​	​	​	​	​​	​	key	bits​	Therefore	we	estimate	that	the	bias	of	​	​	​	​	​	​​	is	​	​​.	(c)	Describe	a	linear	attack,	analogous	to	Algorithm	3.2,	that	will	find	eight	subkey	bits	in	the



last	round.	Answer:	The	algorithm	is	as	follows:	​	Algorithm:	L	INEAR	ATTACK	(	​	$​	​​¼	​	)	​​	​	to	​​	​	for	​	​	do	​​	​	​	​	​	​	for	each	​​	​for	​	​​	​	to	​​	​	​	​	do	​	​	​	​	​	​	​	​	​	​	​	​​	​	​(​	​​	​	​	​	​	(​​	​	​	​	​	​	​	7​	​	​​¼	(​​	​	do	7​​​	​	​​¼	(​​	​	​	​	​	​	​	​	​	7	​	7​​	​	​	​	​	if	then	​​	​	​	​	​	​	​​	​	$​%	​	​	for	​​	​	​	​​	​	to	​​	​	​	​	​	​	​	​	​​	​	​	​	​	​	if	​​	​​	​​	​	​	​	​	$​%	do	​	​​	​	​	​	​	​	​	then	$​%	$​%​​	​	​	​	output	$​%​​	​	​​	​	​	$	​	(d)	Implement	your	attack	and	test	it	to	see	how	many	plaintexts	are	required	in	order	for	the
algorithm	to	find	the	correct	subkey	bits	(approximately	​​​​–	​​​​	plaintexts	should	suffice;	this	attack	is	more	efficient	than	Algorithm	3.2	because	the	bias	is	larger	by	a	factor	of	,	which	means	that	the	number	of	plaintexts	can	be	reduced	by	a	factor	of	about	).	3.15	Suppose	that	the	S-box	of	Example	3.1	is	replaced	by	the	S-box	defined	by	the	following
substitution	​​¼¼	:	​	​	​	​	​	​	​	​	​	2	-	+	6	​	​​¼¼	​	6	​	​	+	​	​	​	​	​	​	​	2	Exercises	35	(a)	Compute	the	table	of	values	,	​	for	this	S-box.	Answer:	The	table	of	values	is	as	follows:	​	​	​	​	​	​	​	​	​	​	​	​​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	(b)	Find	a	differential	trail	using	four	active	S-boxes,	namely,	&	,	&​	,	&​​	and	&​​	,	that	has	propagation	ratio	​	​.	Answer:	The	following	propagation	ratios	of	differentials	can	be
verified	from	the	table	computed	in	part	(a):	​	​	​	​	In	&	,	/​	​​​​​	​​​​	​	​	In	&​	,	/​	​​​​​	​​​​	​	​	In	&​​	,	/​	​​​​​	​​​​	​	​	In	&​​	,	/​	​​​​​	​​​​	​	These	differentials	can	be	combined	to	form	a	differential	trail	of	the	first	three	rounds	of	the	SPN:	/​	​	​	​	​​	​​	​	​	​	Hence,	it	can	be	verified	that	​​	​	​	​	​	​	7​	​	​	​	with	probability	​	​.	(c)	Describe	a	differential	attack,	analogous	to	Algorithm	3.3,	that	will	find	eight	subkey	bits	in	the	last
round.	Answer:	The	algorithm	is	as	follows:	36	Block	Ciphers	and	the	Advanced	Encryption	Standard	​	Algorithm:	D	IFFERENTIAL	ATTACK	(	​	$​	​​¼¼	​	)	​​	​	to	​​	​	for	​	​	do	​​	​	​	​	​	​	​	​	for	each	​if	​​	​	​	​	​	and	​	​	​	​	​	​	​	​	for	​	​	​	​	to	​​	​	​	​	​	​	​	​	​​	​	​	​	(​​	​	​	​	​	​	​	​	​	​	​	(​​	​	​	​	​	​	​	​	​	​	​	​	​	​	7​	​	​​¼¼	(​​	​	​	​	​	​	​	​	​	​	7​​​	​	​​¼¼	(​​	​	​	​	​	​	​	(	​	​	​	​	​	do	​	​	(​​	​	​	​	​	​	then	​	do	​	​	​	7​	​	​	​​¼¼	(​​	​	​	​	​	​	​	​	​	​	​	​	​	7​​​	​	​	​​¼¼	(​​	​	​	​	​	​	​	​	​	​	​	​	​	7	​	7	​	7	​	​	​	​	​	​	7​​​	​	​	7​​​	​	7​​​	​	​	​	​	​	​	​	​if	7​	​	​​​​	and	7​​​	​	​​​​	​	​	​	then	​​	​	​	​	​	​
​​	​	​	​	​	​	​	​	$​%	​	​	for	​​	​	​	​​	​	to	​​	​	if	​​	​​	​	​	​	​	$​%	​	​​	​	​	​	​	do	then	$​%	$​%​​	​	​	​	output	$​%​​	(d)	Implement	your	attack	and	test	it	to	see	how	many	plaintexts	are	required	in	order	for	the	algorithm	to	find	the	correct	subkey	bits	(approximately	​​​–	​​	plaintexts	should	suffice;	this	attack	is	not	as	efficient	as	Algorithm	3.3	because	the	propagation	ratio	is	smaller	by	a	factor	of	).	3.16
Suppose	that	we	use	the	SPN	presented	in	Example	3.1,	but	the	S-box	is	replaced	by	a	function	​	​	that	is	not	a	permutation.	This	means,	in	particular,	that	​	​	is	not	surjective.	Use	this	fact	to	derive	a	ciphertext-only	attack	that	can	be	used	to	determine	the	key	bits	in	the	last	round,	given	a	sufficient	number	of	ciphertexts	which	all	have	been	encrypted
using	the	same	key.	​​	​	​	.	Suppose	we	are	given	Answer:	Suppose	that	​	​	​	for	some	​	a	set	of	ciphertexts	,	all	of	which	are	encrypted	using	the	same	unknown	key,	.	For	each	​	​	​	$	,	and	for	each	​,	​	​	,	it	must	be	the	case	that	​	​	​	.	For	​	​	,	define	​	​	​	​	Then	​	​	​	for	​	​	​	​,	​	​	​	​	​	​	​	​	​	​​​	​​	​​​	​	​	​	​	​	​​	​	​	​	.	If	​​	​	is	reasonably	large,	then	we	expect	that	​	​	​​	​	​	​	​	​	,	and	hence	the	key	can	be	determined.	4
Cryptographic	Hash	Functions	Exercises	4.1	Suppose	)	​	​	​	is	an	,​	8	-hash	function.	For	any	​	​,	let	​	and	denote	​	​	)	​​	​	)	​	​	)	​.	Define	&	​​​​	​	​​	​	​	)	​	)	​​	​​​	Note	that	&	counts	the	number	of	unordered	pairs	in	(a)	Prove	that	​	​​​	so	the	mean	of	the	​	​	’s	is	​	that	collide	under	).	​​	,​	​	,	​	8	​	​,	form	a	partition	of	​.	Hence,	​​​	8	,	it	is	immediate	that	the	Answer:	the	sets	)	,	​	​	Clearly	,	.	Then,
because	​	​​	​	mean	of	the	​	​	’s	is	,	8	.	(b)	Prove	that	​	​​​	​	​	&	​​​	​	​​	Answer:	We	have	the	following:	​	​​​	​	​​​	​	​​​	​​	​​​	​	​​	​	​​	​	​​	​​	​​	​	​​	​	,	​	​	​​	​​	​	using	the	result	proven	in	part	(a).	(c)	Prove	that	​	,	​​	​	​​​	,	​	,	​	,​	​	8	37	38	Cryptographic	Hash	Functions	Answer:	Note:	the	term	“	,	”	should	be	“	&	​​	.	We	have	the	following:	​	​​​	​​	​​​	​	​​​	​​	​	​	,	&​	​	​	​​​	​​	​	8​​	,	8	,	8	,	​8	​​	​	,	​	8	&	​	,	(d)	Using	the	result	proved	in	part	(c),	prove	that	​	​
,​	&	,	​	8	Further,	show	that	equality	is	attained	if	and	only	if	,	8	​​	​​	for	every	.	Answer:	Clearly	​	​​	​​​	​​	​​​	and	this	sum	is	zero	if	and	only	if	​	​	​	for	all	​	​.	In	other	words,	,​	​	​	&	​	,	​	8	and	equality	occurs	if	and	only	if	​	​	,	8	for	all	that	​	​	&	​	,	4.2	As	in	Exercise	4.1,	suppose	)	​	)	​​	​	,	8	​	,	8	​	&	​	​	​.	​	Finally,	note	,	​	​	​	is	an	,​	8	-hash	function,	and	let	​​	​	)	​	​	for	any	.	Let	5	denote	the
probability	that	)	​	)	​​	,	where	​	and	​​	are	random	(not	necessarily	distinct)	elements	of	.	Prove	that	​	5	with	equality	if	and	only	if	​)	​​	for	every	.	Answer:	Define	​	8	​	​	,	8	$	​​	​	​	​​	​	)	​	)	​​	​​​	Then	$	&	​	,	,	where	&	is	defined	as	in	Exercise	4.1.	(The	term	“​,	”	accounts	for	the	collisions	where	​	​​	;	and	each	unordered	pair	​	​	​​	with	)	​	)	​​	accounts	for	two	ordered	pairs,	namely,	​	​	​​
and	​​	​	​	.)	Using	the	result	proven	in	Exercise	4.1,	part	(d),	we	have	that	​	5	&	​	,	,​	​	​​	​	​	,	,​	​​	​,	Further,	equality	occurs	if	and	only	if	​	​	,	8	for	all	part	(d)).	​	8	​	​	​	​	(as	in	Exercise	4.1,	Exercises	39	4.3	Suppose	that	)	​	​	​	is	an	,​	8	-hash	function,	let	​	​​	​	)	​	​	)	​	​​	and	let	​​	)	for	any	.	Suppose	that	we	try	to	solve	Preimage	for	the	function	),	using	Algorithm	4.1,	assuming	that	we
have	only	oracle	access	for	).	For	a	given	,	suppose	that	​	is	chosen	to	be	a	random	subset	of	having	cardinality	​.	(a)	Prove	that	the	success	probability	of	Algorithm	4.1,	given	,	is	​​	​	​	​	​	​​	​​	​	​	​	​​	​​	​	​​	​	​	​	Answer:	The	total	number	of	subsets	​	such	that	​	​	is	​​	.	such	that	​	​	and	​	)	is	The	of	subsets	​	​	number	​​	.	Therefore	the	failure	probability	of	Algorithm	4.1	is	​	​​	​	,	​	​	​	and	the
result	follows.	)	(b)	Prove	that	the	average	success	probabilty	of	Algorithm	4.1	(over	all	is	​	​	​	​	​	​	​​	​	​	​​	​	​​	8	​	​​	​​	​	​	​​	​	​​	​	Answer:	The	average	success	probability	is	​	8	​​​	​	​	​	​	​​	​	​	8	​	​​​	​	​	(c)	In	the	case	​	​,	show	that	the	success	probability	in	part	(b)	is	​	8	.	Answer:	We	compute	as	follows:	​	​	​	​​	​	8	​	​​​	​	​	​	​	8	​	​	​	where	we	use	the	fact	that	4.1(a).	4.4	Suppose	that	)	​	​	​	8	​,	8	​	​​	8	,	​​	​	​	​	​​	​	​8	​​​	8	,	​	​	​​​	​​	,	,
which	was	proven	in	Exercise	​	​	is	an	,​	8	-hash	function,	let	​	)	​​	​	)	​	​	​​	and	let	​​	)	for	any	.	Suppose	that	we	try	to	solve	Second	Preimage	for	the	function	),	using	Algorithm	4.2,	assuming	that	we	have	only	,	suppose	that	​	is	chosen	to	be	a	random	oracle	access	for	).	For	a	given	​	​	having	cardinality	​	​.	subset	of	(a)	Prove	that	the	success	probability	of	Algorithm
4.2,	given	​,	is	​​​	​	​​	​	​	​	​​	​​	​	​	40	Cryptographic	Hash	Functions	​	​	​​​	​	​​	​	​	​	​​​	​	Answer:	​	such	that	​	​	​	The	total	number	of	subsets	​	is	​​	.	Denote	)	​	;	then	the	number	of	subsets	​	​	such	that	​	​	​	and	​	)	is	​​	​​	.	Therefore	the	failure	probability	of	Algorithm	4.2	is	​​	​​	​​	,	and	the	result	follows.	)	(b)	Prove	that	the	average	success	probabilty	of	Algorithm	4.2	(over	all	​	is	​	​​	​	​	​​	​	​	​	​	​​	​	​	​	​	​​	,	​	​​	​
Answer:	The	average	success	probability	is	​	​	​	​​​	​	​	​​	​	​	​	​	​​	​​	​​	​	​	,	​	,	​​​	​	​	​​​	(c)	In	the	case	​	,	show	that	the	success	probability	in	part	(b)	is	​	​​	​	​​​	​	​	,	,	​	,	​	Answer:	We	compute	as	follows:	​	​	​​	​	​​	​	,	​	​​​	​	​	,	,	​	,	​	,	​	​	​	​	​	​	​	,​​	​​	​	​	​	​	​​​	​	​​	​​​	​​	,	,	​	​	​	​	​​​	​​	​	,	,	​	,	​	​	where	we	use	the	fact	that	​​​	​​	,	,	which	was	proven	in	Exercise	4.1(a).	4.5	If	we	define	a	hash	function	(or	compression	function)	)	that	will	hash	an	​-bit
binary	string	to	an	​-bit	binary	string,	we	can	view	)	as	a	function	from	​​	to	​	​​	.	It	is	tempting	to	define	)	using	integer	operations	modulo	.	We	show	in	this	exercise	that	some	simple	constructions	of	this	type	are	insecure	and	should	therefore	be	avoided.	(a)	Suppose	that	​	​	and	)	​	​​	​​	is	defined	as	)	​	​	​	​	​	​	​​​	​	​	​	​	Prove	that	it	is	easy	to	solve	Second	Preimage	for	any	​
​​	without	having	to	solve	a	quadratic	equation.	Answer:	Note:	we	need	to	assume	that	​	.	​	​​​	​	.	Also,	​​	​	​	Suppose	that	is	even;	then	​	​	​	​​​	because	​	.	Define	​	​	​	​	​​​	​	;	then	)	​​	​	​	​	​	​	​	​	​	​	​​	​	​	​	​	​​	​	​	​	​	​​​	​	​	​	​	​	​​	​	​	​	​	​​​	​	​	​​​	​	​	​​​	​	Exercises	41	Now	suppose	that	is	odd.	Define	​	​	​	because	​	​	is	odd.	Now,	we	have	that	)	​​	​	​​​	​	;	note	that	​​	​	​	​	​	​	​​​	​	​	​	​	​	​	​​​	​	)	​​​	Therefore,	given	any	​,	we	can	find	​	​	​	such	that	)	​	​	)	​​.	(b)
Suppose	that	​	​	​	and	)	​	​​	​​	is	defined	to	be	a	polynomial	of	degree	:	)	​	​	​	​	​	​	​	​	​	​	​	​​​	​	​	​	where	​	for	​	​	.	Prove	that	it	is	easy	to	solve	Second	Preimage	for	any	​	​​	without	having	to	solve	a	polynomial	equation.	Answer:	Define	​	​	​	​	​	​​​	​	.	Then	​​	​	and	)	​​	)	​​.	​​	​	​	is	a	preimage	resistant	bijection.	Define	4.6	Suppose	that	​	​	​​	​	​	​​	​	)	​	​​	​	​​	​	as	follows.	Given	​	​​	​	​​	,	write	​	​	​	​	​	​	​	​	​	​	where	​​	​	​​​	​​	​	​	​​	​	​​​	​	​​​	​​​	.	Then
define	)	​	​	​​	​	​​​	​	Prove	that	)	is	not	second	preimage	resistant.	​​	​	​	,	​​	​	​	​.	Define	Answer:	We	are	given	​	​	​	​​​	.	Let	​​	​	​	​​	​​	​	​​	​	​	​​	,	​	​	​​	and	​	​	​	.	Then	​	​	and	)	​	)	​	.	4.7	For	8	​​​	and	​​	​	​​,	compare	the	exact	value	of	5	given	by	the	formula	in	the	statement	of	Theorem	4.4	with	the	estimate	for	5	derived	in	the	proof	of	that	theorem.	Answer:	Note:	the	estimate	is	derived	after	the	proof	of
Theorem	4.4.	Define	5	to	denote	the	exact	probability,	as	computed	in	Theorem	4.4;	and	define	5​	​	​​​	​​	.	Values	of	5	and	5​	are	tabulated	as	follows:	​	​	​	​	​	​	​​	​​	​	​​	​​	​	​	​	​	​	​	​	​​	5	​	​	​​​​​​​	​	​​​​	​​​​	​​​​​​	​​​​	​​	​​​​	​	​	​​	​​​​​	​​	​	​​	​​​​​​	​	​​​​​​​	​	​​​​​​	​​​	​	​	​	​​​​​	​	​	​​​​​​​	​	​	​​​​	​​	​​	​​	​​​​	​	​	​​​	​​	​	​​​​​​​​​	​	​	​​​​​	​	​​	​	​	5​	​	​​​​​	​​	​	​​​​​​	​​	​​​​​​​​​​​	​​	​	​​​	​​	​​​	​	​	​	​​​​​​	​	​	​	​	​​​	​	​​​​​​​​​	​​​​​​​	​	​​​​​​​​​​	​​​​	​	​​​​	​​​​​​	​	​	​​​	​​​​​​	​​	​​	​	​​	​​	​	​	​​	​	​​​​​	​​​	​	42	Cryptographic	Hash	Functions	​	​	4.8	Suppose	)	​	is	a	hash	function	where	Suppose	that	%	is	balanced	(i.e.,	​)	​​	​	​​​	and	​​​	are	finite	and	​​​	​​​.	​​​	​​​
for	all	).	Finally,	suppose	O	RACLE	P	REIMAGE	is	an	5​	​​-algorithm	for	Preimage,	for	the	fixed	hash	function	).	Prove	that	C	OLLISION	TO	P	REIMAGE	is	an	5	​	​	​	​​-algorithm	for	Collision,	for	the	fixed	hash	function	).	Answer:	We	compute	as	follows:	​​C	OLLISIONTO	P	REIMAGE	succeeds​	​	​	​​C	OLLISION	TO	P	REIMAGE	succeeds​​​	​​​	​​​	​	​	​​​	​​​	​	​​​	​​​	​​​	​	​​​	​	​	​	​	​	​	5	​	​	​​O	RACLE	P
REIMAGE	succeeds​)	​​​	​​​	​	​	​​​	​​​	​​​	​​​	​	​	​​O	RACLE	P	REIMAGE	succeeds​)	​​​	​​​	​​​	​​​	​	​​​	​	​​O	RACLE	P	REIMAGE	succeeds​	​	​​​	​​​	​​​	​​​	​	​	​​O	RACLE	P	REIMAGE	succeeds​	​	​​​	​​​	​​​	​	​​​	5	​​​	​	​	​	​	​	​	​	​	​​	​	4.9	Suppose	)	​	​​	​	​​	​​	​	​	is	a	collision	resistant	hash	function.	​	​	​​	​	​	as	follows:	(a)	Define	)​	​	​​	​	​​	​​	​	as	​	​	​​	,	where	​	​	​​	​​	​	​​	.	1.	Write	​	2.	Define	)	​	​	)	)	​	)	​​	.	Prove	that	)​	is	collision	resistant.	Answer:	Suppose	that	we	have	found	a
collision	for	)	​	,	say	)​	​	)​	​​	where	​	​​	.	Denote	​	​	​​	and	​​	​​	​​​	.	First,	suppose	that	)	​	)	​​	.	Then	​	​	​	​	​	​​	​	​	)	​	​	)	​​	​	)	​​	​	)	​​​	and	)	)	​	​	)	​​	)	)	​​	​	)	​​​	​	Therefore	we	have	found	a	collision	for	)	.	If	)	​​	​	)	​​​	,	then	we	have	a	collision	for	)	by	a	similar	argument.	Therefore	we	can	assume	that	)	​	)	​​	and	)	​​	)	​​​	.	Because	​	​	​	​	,	it	follows	that	​	​	​​	​	​​	​	​​​	.	Therefore	​	​	​​	or	​​	​	​​​	.	In	either	of	these	two	cases,	we	have	a
collision	for	)	.	We	conclude	that	we	can	always	find	a	collision	for	)	,	given	a	collision	for	)​	.	Exercises	43	​	​​	​	​	(b)	For	an	integer	​	,	define	a	hash	function	)	​	​	​​	​	​	​	​​	​	​	recursively	from	)​	,	as	follows:	​	​	​	1.	Write	​	​​	​	​	​	as	​	​	​​	,	where	​	​	​​	​​	​	​	​	.	2.	Define	)	​	​	)	)​	​	)​	​​	.	Prove	that	)​	is	collision	resistant.	Answer:	Suppose	that	we	have	found	a	collision	for	)	​	,	say	)​	​	)​	​​	where	​	​​	.	Denote
​	​	​​	and	​​	​​	​​​	.	First,	suppose	that	)	​	​	)​	​​	.	Then	)​	​	)​	​​	)​	​​	)​	​​​	and	)	)​	​	)​	​​	)	)​	​​	)​	​​​	​	Therefore	we	have	found	a	collision	for	)	.	If	)​	​​	)​	​​​	,	then	we	have	a	collision	for	)	by	a	similar	argument.	Therefore	we	can	assume	that	)	​	​	)​	​​	and	)​	​​	)​	​​​	.	Because	​	​	​	,	it	follows	that	​	​	​​	​​	​	​​​	.	Therefore	​	​​	or	​​	​​​	.	In	either	of	these	two	cases,	we	have	a	collision	for	)​	.	We	conclude	that	we	can	always	find
a	collision	for	at	least	one	of	)	or	)​	,	given	a	collision	for	)​	.	4.10	In	this	exercise,	we	consider	a	simplified	version	of	the	Merkle-Damg˚ard	construction.	Suppose	​​​	​​	​	​​	​	​	​	​​	​	​	​	where	​	​,	and	suppose	that	​	​	​​	​	​	where	​	​​	​	​​	We	study	the	following	iterated	hash	function:	​​	​	​	​	​	​	​	​	​​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	˚	RD	(​​	​​	​)	Algorithm	4.1:	S	IMPLIFIED	M	ERKLE	-DAMG	A	external	​​​	​​	​	​​	​	​	​​​	​​	​	for	​	​	​
to	​	​	​	​	​	​	​​	​	​​	​	​​	​​	​	​​​	​​	​​	)	​	​	​	return	)	​	do	Suppose	that	​​​	​​	is	collision	resistant,	and	suppose	further	that	​​​	​​	is	​​	​	​	​	such	that	zero	preimage	resistant,	which	means	that	it	is	hard	to	find	​	​	​​​	​​	​	​	.	Under	these	assumptions,	prove	that	)	is	collision	resistant.	Answer:	Note:	In	the	seond	last	line	of	Algorithm	4.9,	“​	”	should	be	replaced	by	“​	”.	Suppose	that	)	​	)	​	​	where	​	​​	.	We
consider	two	cases:	​	​​	​	44	Cryptographic	Hash	Functions	(a)	​	​​	​​	for	some	positive	integer	​,	and	​​	​	​	(b)	​	​​	and	​​	!​,	where	​	and	!	are	positive	integers	such	that	!	​	​.	We	consider	the	two	cases	in	turn.	(a)	We	have	​	​	​	.	If	​	​	​	,	then	we	have	a	collision	for	​​​	​​	and	and	we’re	done,	so	we	assume	that	​	​	​	.	This	implies	that	​	​	​	​	​​	.	​	​	,	then	we	have	a	collision,	so	we	assume	​	Now
if	​	​	​	,	which	implies	that	​	​	​	​	​	and	​	​​	.	Continuing	to	work	backwards,	either	we	find	a	collision	for	​​​	​​	,	or	we	have	​	​	​​​	for	​	​​	​	​​	​	​	​	​	​.	But	then	​	​​	,	a	contradiction.	We	conclude	that	we	always	find	a	collision	for	​​​	​​	in	this	case.	​​	​	​	​	​	(b)	We	have	​	​​​	.	If	​	​​​	,	then	we	have	a	collision	for	​​​	​​	and	we’re	done,	so	we	assume	that	​	​​​	.	This	implies	that	​	​​​	and	​	​​​.	​​​	,	then	we	have	a	collision,
so	we	assume	​	Now	if	​	​	​​	,	which	implies	that	​	​	​​​	​	and	​	​​​	.	Continuing	to	work	backwards,	either	we	find	a	collision	for	​​​	​​	,	or	we	eventually	reach	the	situation	where	​	​​​	.	Then	​​	​​​	​​​	​​	​​​	,	so	​​​	​​	is	not	zero	preimage	resistant.	Therefore	we	either	find	a	collision	or	a	zero	preimage	for	​​​	​​	in	this	case.	​	​	4.11	A	message	authentication	code	can	be	produced	by	using	a	block
cipher	in	CFB	​​	,	supmode	instead	of	CBC	mode.	Given	a	sequence	of	plaintext	blocks,	​	pose	we	define	the	initialization	vector	​	to	be	​	.	Then	encrypt	the	sequence	​​	​​	using	key	in	CFB	mode,	obtaining	the	ciphertext	sequence	​	(note	that	there	are	only	​	​	ciphertext	blocks).	Finally,	define	the	MAC	to	be	​	​	.	Prove	that	this	MAC	is	identical	to	the	MAC
produced	in	Section	3.7	using	CBC	mode.	Answer:	Using	CFB	mode,	we	obtain	the	following:	​	​	​	​	​	​​	​	​	​	​​	​	​	​	​	​​	..	..	..	.	.	.	​	​	​	MAC	​	​	​	​	​​	​	Exercises	45	​	​	​,	we	obtain	the	following:	Using	CBC	mode	with	​	​	​	​	​	​	​	​	​​	​	​	​	​​	​​	​	​​	​	​​	..	..	..	.	.	.	​​	​	​​	​	​​	MAC​	​	​	​	It	is	easy	to	prove	by	induction	on	​	that	​	​​	we	have	MAC	​	​	​	​​	,	​	​	​	​	​	​.	Finally,	​	​​	​​	MAC​	​	​	​​	Therefore	the	same	MAC	is	produced	by	both
methods.	4.12	Suppose	that	​	​	​	​	is	an	endomorphic	cryptosystem	with	​​	​	​	.	Let	​	be	an	integer,	and	define	a	hash	family	​	​	​	​​	​	​	​	and	​​	​	​	,	as	follows:	​	​	​	​​	​	​	​​	​​	​​	​	​	​	​	​	,	where	)​	​	​	​	​	​	​	​	​	​	​	​	Prove	that	​	​	​	is	not	a	secure	message	authentication	code	as	follows.	Note:	you	should	assume	​	in	this	question.	(a)	Prove	the	existence	of	a	​​	​​-forger	for	this	hash	family.	​​	​	​	,	​	.	Request	the
MAC	of	​	​	​	​	​	​	,	Answer:	Let	​	​	​	​	​	​	say	​	.	Then	​	is	a	forged	MAC	for	the	new	message	​	​	​	​	​	​	​	​	​	​	.	(b)	Prove	the	existence	of	a	​​	-forger	for	this	hash	family	which	can	forge	the	MAC	for	an	arbitrary	message	​	​	​	​	​	​	(this	is	called	a	selective	forgery;	the	forgeries	previously	considered	are	examples	of	existential	forgeries).	​	.	Note	that	the	difficult	case	is	when	Answer:
Note:	We	actually	construct	a	​​	​​-forger.	First,	suppose	that	​	​	for	some	​​	​	.	Define	​​	​	​	​	​	​	​	​	​	​	​	if	​	​​	​	if	​	​	if	​	​.	Request	the	MAC	of	​	​	​	​	​	​	​​	,	say	​	.	Then	​	is	a	forged	MAC	for	the	message	​	​	​	​	​	​	.	​	.	If	​	is	even,	then	)​	​	​	​	​	​	​	Now,	suppose	that	(i.e.,	we	have	a	​​	​​-forgery).	If	​	is	odd,	then	let	​	and	request	the	MAC	of	​	​	​	​	​	​	​	​	,	say	​	.	Then	​	is	a	forged	MAC	for	the	message	​	​	​	​	​	.	​	46
Cryptographic	Hash	Functions	​​	​​	​	​	,	where	4.13	Suppose	that	​	​	​	​	is	an	endomorphic	cryptosystem	with	be	an	integer,	and	define	a	hash	family	​	​	​	​​	​	​	.	Let	​	​​	​	​	​	and	​​	​	​	,	as	follows:	​	​	​	​	​	​​	​	​	​	)​	​	​	​	​	​	​	​	​	​​​	​	​	​	​	​	​	​	​​​	​	​	Note:	you	should	assume	​	in	this	question.	(a)	When	​	is	odd,	prove	the	existence	of	a	​​	-forger	for	this	hash	family.	Answer:	Suppose	we	request	the	MAC	of	​​	​​	​	​	​	​	​​,
say	​	​	.	Then	​​	​	​	​​	​​​	​	.	Since	​	is	odd,	it	follows	that	the	inverse	of	​	​	exists	modulo	​	,	which	we	denote	by	​	​	​​​	​	.	Then	​	​	​​	​	​	​​​	​	,	so	​	​	can	be	computed,	given	​	​	.	Next,	we	request	the	MAC	of	​	​	​	​	​	​	,	say	​	,	where	​,	and	solve	for	​	.	Now	we	can	compute	the	MAC	of	​​	​	​	​	​	​	,	for	example,	to	be	​​	​	​	​	​	​	​​​	​	.	This	is	a	valid,	forged	MAC.	(b)	When	​	,	prove	the	existence	of	a	​	​​	-forger	for	this
hash	family,	as	follows:	1.	Request	the	MACs	of	​​	and	​	​​.	Suppose	that	)	​	​​	and	​	)​	​	​​.	2.	Show	that	there	are	exactly	eight	ordered	pairs	​	​	​	​	such	that	​	​	​	​​,	​	​	is	consistent	with	the	given	MAC	values	and	​.	3.	Choose	one	of	these	eight	values	for	​	​	at	random,	and	output	the	possible	forgery	​​	​​​	​​	.	Prove	that	this	is	a	valid	forgery	with	probability	​	​.	​	and	​.	Also,	the
Answer:	Note:	You	should	assume	here	that	​	forgery	to	be	outputted	should	be	computed	as	​	​	​​​	​	.	​​​	​	,	​	​	​​​	​	The	system	of	two	congruences	​	​	​	​	​	​	​	​​​	has	at	least	one	solution.	Writing	​	​​​	​​​	​	and	sub	​​​	​	,	stituting	into	the	other	congruence,	we	obtain	​	​	​	​​	​	​	​​	​​​	​	.	This	has	at	least	one	solution,	so	​​	​	or	​	​	​​​	​​.	Then	it	can	be	shown	that	this	congruence	has	exactly	eight	solu.	For
tions	modulo	​	,	namely	​	​​	​​​	​	​	​​​	​	,	​	​	each	​	,	the	value	of	​​	is	defined	uniquely,	via	the	congruence	​	​	​	​	​	​​​	​	.	Therefore	there	are	exactly	eight	solutions	for	the	pair	​	​	​	​	.	Now	choose	one	of	the	eight	possible	values	of	​	​	.	Define	​​	​​​	​	to	be	the	forged	MAC	for	the	message	​​	​​.	This	MAC	will	be	valid	if	​​	​	​​,	which	is	true	with	probability	​	​.	(c)	Prove	the	existence	of	a	​​	​​-forger	for
this	hash	family	which	can	forge	the	MAC	for	an	arbitrary	message	​	​	​	​	​	​	.	Answer:	Choose	​	​	​	​	​	​	​	.	Request	the	following	three	MACs:	i.	​	,	the	MAC	of	​	​​	​	​	​	​	​​;	ii.	​​	,	the	MAC	of	​​	​	​	​	​	​	​	​	;	and	iii.	​​	,	the	MAC	of	​​	​​	​	​	​	​	​​.	Then	it	is	easy	to	see	that	the	MAC	of	​	​	​	​	​	​	​	​	is	​	​	​​	​​	​​​	​	.	4.14	Suppose	that	​	​	​	is	a	strongly	universal	,​	8	-hash	family.	8	​	,	show	that	there	exists	a	​​	-forger	for
this	hash	family	(i.e.,	(a)	If	​#	​	​).	such	that	​	​	​	.	Request	the	MACs	of	​	Answer:	Choose	any	​​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​​	​​	​	​	Exercises	47	and	​​	,	which	we	denote	​	​	,	respectively.	There	is	a	unique	key	such	that	)​	​	and	)​	​​	​	.	Now	given	any	​	​​	​​	​​	,	it	is	possible	to	compute	the	forged	MAC	)	​	​​​	because	the	key	is	known.	(b)	(This	generalizes	the	result	proven	in	part	(a).)	Denote	9	8	​	.
Prove	there	exists	a	​	9​	-forger	for	this	hash	family	(i.e.,	​#	​	​	9).	Answer:	Choose	any	​​	​	​	such	that	​	​	​	.	Request	the	MACs	of	​	​	​	and	​	,	which	we	denote	​	,	respectively.	There	are	exactly	9	keys,	say	​	​	​	​	​	!	such	that	)	​​	​	and	)​​	​​	​	for	​	​	9.	Choose	​	​	​	​	​	!	randomly.	Now	given	any	​	​​	​​	​​	,	the	MAC	)​	​​​	is	valid	with	probability	at	least	​	9,	because	the	probability	that	is	the	correct
key	is	​	9.	4.15	Compute	​#	​	and	​#	for	the	following	authentication	code,	represented	in	matrix	form:	​	​​	​​	​	​	​	​	​	​	1	1	2	2	3	3	key	1	2	3	4	5	6	1	2	1	3	2	3	​	2	3	3	1	1	2	​	​	3	1	1	2	3	1	Answer:	​#	​	​	;	the	pair	​	​	will	be	valid	with	this	probability.	Define	​​	to	denote	the	probability	of	forging	a	MAC	for	a	new	message,	given	​	,	​	​	​​.	It	is	easy	to	verify	the	that	the	MAC	of	​	is	​
(where	​	following:	​	​	​​	optimal	forgery	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​​	​	​	​​	​	​	​	​​	​	​	​	​​	​​	​	​	​	​	​	​	​	​	​	​	​​	​	​	​​	​	​	​​	​	​	​	Then	​#	​	​	​	​​	​	​	​	​	​	​	​	​	​	​	​	​,	define	​	​	​	​	​	by	the	rule	​​​​​​​​	​​	​	​	​	​	4.16	Let	​	be	an	odd	prime.	For	​	​	​	​	​	​	​	​	​​​	​​	Prove	that	​​	​​	​	​​	​​	​	​	​	​	​	​​	is	a	strongly	universal	​​	​​-	hash	family.	​	Answer:	Suppose	that	​​	​	​	​	​	​	​,	where	​	​	.	We	will	show	that	there	​	​​​	​	and	is	a	unique	key	​	​	​	​	such	that	​	​	​	​	​	​	​	​	48	Cryptographic	Hash	Functions	​​	​	​	​	​	​	​	​​​	​​.
Subtracting	these	two	equations,	we	have	​​	​	​	​	​	​​​	​	​​	​	​	​	​​	​	​	​​​	​	​	​	​​	​	​	​	​	​​	​	​	​	​​	​​​	​	​	​	​​	​	​	​​	​​​	​​	Now	that	has	been	determined	uniquely	(modulo	​),	we	can	solve	for	​,	because	​	​	​	​	​​​	​.	4.17	Let	​	​	be	an	integer.	An	,​	8	hash	family,	​	​	​	,	is	strongly	​universal	provided	that	the	following	condition	is	satisfied	for	all	choices	of	​	distinct	elements	​	​	​​	​	​	​	​	​	​	​	and	for	all	choices	of	​	(not	necessarily
distinct)	elements	​	​	​	​	​	​	:	​​	​​	​	​	​	​	)​	​​	for	​	​	​	​	​​​	​	​	​	8	(a)	Prove	that	a	strongly	​-universal	hash	family	is	strongly	!-universal	for	all	!	such	that	​	​	!	​	​.	Answer:	Note:	in	the	definition	of	strongly	​-universal,	“)	​	​​	”	should	be	replaced	by	“)	​	​​	​	”.	Without	loss	of	generality,	suppose	that	!	​	​.	Suppose	that	​	​	​​	​	​	​	​	​	​​	​	are	distinct,	and	suppose	that	​	​	​	​	​	​	​	​.	Let	​​	​	​	​	​	​	​	​	​	be	chosen	such	that	​	​	​​	​	​	​
​	​	​	are	all	distinct.	Now,	for	any	​	!​-tuple	​	​	​	​	​	​	​	​	​	,	it	holds	that	​​	​	​	)​	​​	​	for	​	​	​	​	​​​	Then	it	is	clear	that	​​	​	​	)​	​​	​	for	​	​	​	​	!​​	​	​​		​	​​​​	​​​	​	8	​	​	​​	​	​​	8	​​	​	​	)​	​​	​	for	​	​	​	​	​​​	​	​	8	8​	as	desired.	(b)	Let	​	be	prime	and	let	​	​	be	an	integer.	For	all	​-tuples	​	​	​	​	​	​	​	,	define	​	​	​​​		​	​	​	​	by	the	rule	​	​	​​​		​	​	​	​	​	​	​	​	​	​​​	​​	​	​	​	is	a	Prove	that	​​	​​	​	​	​	​	​​​		​	​	​	​	​	​	​	​	strongly	​-universal	​​	​	hash	family.	HINT	​	Use	the	fact	that	any	degree	polynomial	over	a	field
has	at	most	roots.	​​	be	​	distinct	elements.	There	are	​	Answer:	Let	​	​	​​	​	​	​	​	​	​	possible	keys,	and	​	possible	​-tuples	​	​	​	​	​	​	.	We	will	​	​	Exercises	49	​	show	that,	given	any	​-tuple	​	​	​	​	​	​	,	there	is	exactly	one	​	such	that	​	​	​​​		​	​​	​	for	​	key	​	​	​	​	​	​	​	​.	Suppose	this	is	not	the	case.	Then	there	must	exist	two	different	keys	​	​	​	​	​	​	​​	​	​	​	​	​	​	such	that	​	​	​​​		​	​​	​	¼​	​​​	¼		​	​​	​	for	​	​	​.	This	implies	that	​	​	​	​	​	​	has	at
least	​	solutions	in	polynomial	​	​	​	​	​	​​	​	​	​​​	​	​	​,	namely	​	​	​​	​	​	​	​	​	​	.	In	other	words,	the	​	​	​	​	​	​	​	​​	​	has	at	least	​	distinct	roots	in	the	field	​.	The	two	​-tuples	​	​	​	​	​	​	and	​​	​	​	​	​	​	​	are	different,	so	the	polynomial	​	​	is	not	the	zero	polynomial.	But	a	non-zero	polynomial	of	degree	at	most	​	​	cannot	have	​	distinct	roots	in	a	field,	so	we	have	a	contradiction.	This	contradiction	establishes	the
desired	result.	5	The	RSA	Cryptosystem	and	Factoring	Integers	Exercises	5.1	In	Algorithm	5.1,	prove	that	​​​	​​	​	​	​​​	​	​	​​	​​​	​​	​	​​	​​	and,	hence,	​	​	​​​	​	​​.	​	​	.	Then	have	that	​	​	​​	​​	​	​​	​	.	Answer:	Suppose	that	​	If	​​	and	​​	,	then	​​	​	.	Also,	if	​​	and	​​	​	,	then	​​	.	This	proves	that	​​​	​​	​	​	​​​	​	​	​​	​​​	​​	​	​​	​	​	​	​	​	​	​	​	​	Now,	using	the	equation	​	​	​​	​​	,	we	have	that	​​​	​	​	​	​​	​​	,	and	the	result	is	proven.	5.2	Suppose	that	​	​	in	Algorithm
5.1.	(a)	Prove	that	​​	​​	​	for	all	​	such	that	​	​	​	.	Answer:	​​	​​	​​	​	​​	​	​​	​	​​	​	​	​​	​	for	​	​	​	.	(b)	Prove	that	​	is	4	​​​	​	.	​	Answer:	Suppose	first	that	​	is	even.	Then	​	​	​	​​	​	​	​	​​	​	​	.	Therefore	​	​	​​​	​	.	If	​	is	odd,	then	it	can	be	shown	in	a	similar	fashion	that	​	​	​​​	​	​	​.	In	either	case,	​	is	4	​​​	.	(c)	Prove	that	​	is	4	​​​	​​​	.	​	Answer:	Suppose	first	that	​	is	odd.	Then	​	​	​	​​	​	​	​	​​	​	​	.	Therefore	​	​	​​​	​	​	​	​.	If	​	is	even,	then	it	can	be	shown	in
a	similar	fashion	that	​	​	​​​	​	​	.	In	either	case,	​	is	4	​​​	​​.	5.3	Use	the	E	XTENDED	E	UCLIDEAN	ALGORITHM	to	compute	the	following	multiplicative	inverses:	​​​	​​​	(a)	​	Answer:	​	​​​	​​​	​.	​​​	​	​	(b)	​​	Answer:	​​	​​​	​	​	​​	​.	(c)	​​	​	​​​	​​​	​	Answer:	​​	​	​​​	​​​	​​	.	​	​	​	​	50	Exercises	51	5.4	Compute	​​​	​	​	​​​,	and	find	integers	​	and	​	such	that	​	​	​	​​​	​​​	​	​	​​​.	​​	​​.	Answer:	​​​	​	​	​​	​	​​	​	5.5	Suppose	:	​	​​	​	​	​	is	defined	as	:	​	​	​​​	​​	​	​​​	​​	​	​​​	​	Give	an	explicit
formula	for	the	function	:	,	and	use	it	to	compute	:	​	​	​​.	Answer:	:	​	​	​	​	​	​	​	​	​	​​	​	​​​	​​​,	and	:	​	​	​	​	.	5.6	Solve	the	following	system	of	congruences:	​	​	​	​​​	​	​	​	​	​​​	​	​	​	​	​​​	​	Answer:	​	​	​​	.	5.7	Solve	the	following	system	of	congruences:	​	​​​	​​	​​​	​	​​	​​​	​​​​​	​​​	HINT	First	use	the	E	XTENDED	E	UCLIDEAN	Chinese	remainder	theorem.	ALGORITHM	,	and	then	apply	the	Answer:	​	​.	5.8	Use	Theorem	5.8	to	find
the	smallest	primitive	element	modulo	​	.	Answer:	​​	​​​	​	​,	​​​	​​​	​	​,	​​	​​​	​	​,	​​​	​​​	​	​​	and	​​​	​​​	​	​​.	Therefore	the	smallest	primitive	root	modulo	​	is	​.	5.9	Suppose	that	​	​	​	​,	where	​	and	​	are	odd	primes.	Suppose	further	that	​	*	​	​​​	​​.	Prove	that	*	is	a	primitive	element	modulo	​	if	and	​	,*	​	​​​	​​.	only	if	*​	Answer:	This	follows	immediately	from	Theorem	5.8,	which	(in	this	case)	states	​	​​​	​	and	*​	​	that	*
is	a	primitive	element	modulo	​	if	and	only	if	*​	​​​	​​.	But	*​	​	​​​	​	if	and	only	if	*	​	​​​	​​.	We	have	assumed	​	​​​	​​,	so	the	result	follows.	that	*	5.10	Suppose	that	​	​​,	where	​	and	​	are	distinct	odd	primes	and	​	​	​​​	​	​	​	​	.	The	RSA	encryption	operation	is	​	​	​	​​​	​	and	the	decryption	​	operation	is	​​​	​.	We	proved	that	​	​	if	​	​	.	Prove	that	the	same	statement	is	true	for	any	​	​.	​	​	​​	​​	​	​	​​	​​	​	​	​	Use	the	fact	that	​	​
​​	​​​	​​	if	and	only	if	​	​	​​	​​​	​	and	​	​​	​​​	​​.	This	follows	from	the	Chinese	remainder	theorem.	Answer:	Suppose	​	​​	​	​​​	​​.	Then,	for	some	integer	​	​	​,	it	holds	that	​	​	​	​	​	​	​	​	​	​	​	​	​​​	​​​	If	​	​	​	​​​	​​,	then	​	​	​	​	​	​	​​​	​​.	Therefore	​	​	​	​	​​​	​	for	any	​	​	​.	Similarly,	​	​	​	​	​​​	​	for	any	​	​	​.	Now,	applying	the	hint,	​	​	​	​	​​​	​	for	any	​	​	​.	HINT	​	5.11	For	​	​​,	where	​	and	​	are	distinct	odd	primes,	define	​	​	​	​	9	​	​	​​​	​	​​	​	​	52	The	RSA	Cryptosystem	and
Factoring	Integers	​	Suppose	that	we	modify	the	RSA	Cryptosystem	by	requiring	that	​	​	​​​	9	​	.	(a)	Prove	that	encryption	and	decryption	are	still	inverse	operations	in	this	modified	cryptosystem.	Answer:	Denote	​​​	​	​​	​	​​,	​	​	​​	and	​	​	​	​	.	Then	9	​	​​	​​	​	​​​​	​​	​	​​​	We	have	that	​	​	​	​​​	9	​	,	so	​	​9	​	​	​	​	​	​​​​	​	​	for	some	positive	integer	​.	Then	Similarly,	​	​	​	​	​	​	​	¼	​​​	​	​	​	​​​	​​​	​	​	​	​	​	​¼	​​​	​	​	​	​​​	​​​	Since	​	​	​	​​​	​	and	​	​	​	​	​	​​​	​​.	​	​	​​​	​​,	it
follows	immediately	that	(b)	If	​	​	,	​	​,	and	​	,	compute	in	this	modified	cryptosystem,	as	well	as	in	the	original	RSA	Cryptosystem.	Answer:	​,	9	​	​​	and	​	​	​​​.	​	​​​	9	​	​	and	​	​​​	​	​	​	.	5.12	Two	samples	of	RSA	ciphertext	are	presented	in	Tables	5.1	and	5.2.	Your	task	is	to	decrypt	them.	The	public	parameters	of	the	system	are	​	​​​	​	and	​	​	​​	(for	Table	5.1)	and	​	​​​​​	and	​	​​​	(for	Table	5.2).
This	can	be	accomplished	as	follows.	First,	factor	​	(which	is	easy	because	it	is	so	small).	Then	compute	the	exponent	from	​	​​,	and,	finally,	decrypt	the	ciphertext.	Use	the	S	QUARE	-	AND	-	MULTIPLY	ALGORITHM	to	exponentiate	modulo	​.	In	order	to	translate	the	plaintext	back	into	ordinary	English	text,	you	need	to	know	how	alphabetic	characters	are
“encoded”	as	elements	in	​.	Each	element	of	​	represents	three	alphabetic	characters	as	in	the	following	examples:	+43	​	​​	​	​	​	​	​	​​​	-​$	​​	​	​	​	​	​​	​​	​	...	​	​​	​	​	​	​	​	​	​	​​	You	will	have	to	invert	this	process	as	the	final	step	in	your	program.	Answer:	The	first	plaintext	was	encrypted	using	the	values	​	​​​	​	​	​	​	and	​	​	​​.	Hence,	​	​	​	​	​	​	​​​	​	and	​	​​	​​​	​​​	​	​	​	.	The	first	plaintext	was	taken	from	“The	Diary	of
Samuel	Marchbanks,”	by	Robertson	Davies,	1947.	The	first	ciphertext	element,	​	​,	is	decrypted	to	​	​	​​.	We	convert	this	to	three	letters	as	follows:	​	​​	​​​	​	​	​​	​	​​	​​	​​​	​	​	​​	​	​	​	​	​​​	​	​​	Therefore,	the	triple	​​	​​	corresponds	to	the	three	letters	&	,	​	​	​	.	The	complete	plaintext	is	as	follows:	Exercises	53	TABLE	5.1	RSA	ciphertext	​	​	​	​	​​​​	​	​	​​​	​	​​​	​​	​​	​​​​​	​	​	​​​​	​	​​	​	​​	​	​​	​​	​​​	​​	​	​	​​	​​	​​​	​	​​​	​​​	​​​	​	​​	​​	​	​​	​​​	​	​​​	​​​	​​​	​	​​​​​	​​​	​​​​	​​​	​	​​​​	​	​	​	​	​​​	​​​​	​​	​​	​​	​	​	​	​	​​​	​	​​	​​​	​​​​	​​​	​	​​	​	​​	​	​​	​	​	​​	​	​​​	​	​​​	​	​	​	​	​	​	​​	​	​​	​​​​	​​​​​	​​​​​
​​	​​​​	​​	​​​	​​​	​	​​​	​	​	​​​	​​	​	​​	​​​​	​	​	​​	​​	​	​	​​	​​	​​​	​​​​	​​	​​	​	​​	​	​​​​	​​	​​​​	​​​​	​​​	​​​​	​​	​​​​	​	​	​​	​	​​	​​	​​​​	​​	​​​	​	​​	​​	​​​​	​​	​​	​​​​	​​	​​​​	​​​	​	​​	​	​​​	​​​​	​​​​	​	​	​	​​​	​​​​​	​​​	​​​	​​	​	​	​	​	​	​​​	​	​​​​	​​​​​	​​	​​	​​​​	​	​	​​​​	​​​​	​​	​	​​​​	​​​​	​​​	​	​​​​	​​​	​​	​	​​​​​	​​​	​​​	​	​	​​	​	​​​	​​​​​	​​	​​​​​	​​​​	​	​​​	​​​​​	​	​​​	​​​​	​​​	​​​	​	​	​​	​	​​​​​	​​	​​​​	​	​​​	​​	​​​	​​​​	​	​​	​	​​​	​	​​​​​	​​​​	​	​	​​	​​​​	​​​​​	​	​​​​	​​​​	​​​	​	​​​	​	​​​	​	​	​​​​​	​​​​	​​	​​	​​​​​	​	​	​	​​	​​​	​	​	​​​​	​​​	​	​​	​	​​​​​	​​​​	​	​​​​​	​	​​	​​	​	​	​​​	​​​	​​​	​	​	​​​​​	​​​​​	​​​	​	​​	​​​	​​​	​	​	​​	​​​	​​​​​	​​​​​	​​​	​	​	​​​	​​​​	​​	​	​​​​	​​	​​	​​​	​​​​	​​​	​​	​	​	​	​​	​​​​	​	​​​	​​​	​​​​​	​​​	​​	​	​​​	I	became	involved	in	an	argument	about	modern	painting,	a	subject	upon	which	I	am	spectacularly	ill-informed.	However,	many	of	my	friends	can	become	heated	and	even	violent	on	the	subject,	and	I	enjoy	their
wrangles	in	a	modest	way.	I	am	an	artist	myself	and	I	have	some	sympathy	with	the	abstractionists,	although	I	have	gone	beyond	them	in	my	own	approach	to	art.	I	am	a	lumpist.	Two	or	three	decades	ago	it	was	quite	fashionable	to	be	a	cubist	and	to	draw	everything	in	cubes.	Then	there	was	a	revolt	by	the	vorticists	who	drew	everything	in	whirls.	We
now	have	the	abstractionists	who	paint	everything	in	a	very	abstracted	manner,	but	my	own	small	works	done	on	my	telephone	pad	are	composed	of	carefully	shaded,	strangely	shaped	lumps	with	traces	of	cubism,	vorticism,	and	abstractionism	in	them.	For	those	who	possess	the	seeing	eye,	as	a	lumpist,	I	stand	alone.	The	second	plaintext	was
encrypted	using	the	values	​	​​​​​	​	​	​​​	and	​	​​​.	Hence,	​	​	​	​​​	​​​​​	and	​​​	​​​	​​​​​	54	The	RSA	Cryptosystem	and	Factoring	Integers	TABLE	5.2	RSA	ciphertext	​​	​	​​​	​​	​	​​​	​​	​​​​​	​	​	​	​	​​​​	​​​​​	​​	​​​​	​	​	​​​​	​​​​	​​​​	​​	​	​​​​	​​​	​	​​​	​	​​​​	​​​​​	​​​​	​​​​	​​​​	​	​	​	​	​	​	​​​	​​​	​	​​​	​	​	​​	​​	​	​​​	​​​	​​	​​​​	​	​	​​​	​​​	​​​​	​​​	​​​	​​​​	​	​	​​	​​​​	​​​	​	​	​	​​	​​​​​	​​​​	​​​​​	​	​	​	​	​​​​	​​	​	​​​	​​	​​	​	​​	​​	​	​​	​	​​	​	​	​​​	​	​​​	​​​	​​​	​	​	​	​	​	​	​	​​​	​​​​​	​	​	​​​	​​	​​	​	​	​	​	​​	​​​​	​	​​	​​​	​​	​	​	​​	​	​​	​​	​​	​	​	​​	​	​​	​​​​​	​	​	​​​	​​​​	​​​	​​​​​	​​	​	​​​​	​	​	​​	​​	​​​​​	​​​​	​	​​​	​​​​	​	​​​​	​	​	​	​	​​​	​	​	​	​​​	​	​	​	​	​	​​​	​​​​	​	​	​​​​	​​​​	​	​​​	​​​	​​​	​	​​	​​	​​​​	​​​​​	​​	​	​​​​​	​	​	​	​​	​	​​	​	​	​	.	The	second	plaintext	was	taken	from	“Lake	Wobegon	Days,”	by	Garrison	Keillor,	1985.	It	is	as
follows:	Lake	Wobegon	is	mostly	poor	sandy	soil,	and	every	spring	the	earth	heaves	up	a	new	crop	of	rocks.	Piles	of	rocks	ten	feet	high	in	the	corners	of	fields,	picked	by	generations	of	us,	monuments	to	our	industry.	Our	ancestors	chose	the	place,	tired	from	their	long	journey,	sad	for	having	left	the	motherland	behind,	and	this	place	reminded	them
of	there,	so	they	settled	here,	forgetting	that	they	had	left	there	because	the	land	wasn’t	so	good.	So	the	new	life	turned	out	to	be	a	lot	like	the	old,	except	the	winters	are	worse.	5.13	A	common	way	to	speed	up	RSA	decryption	incorporates	the	Chinese	remainder	theorem,	as	follows.	Suppose	that	​	​​​	​	and	​	​​.	Define	​	​​​	​	​	and	​	​​​	​	​​;	and	let	8​	​	​​​	​	and	8​	​	​​​	​.	Then
consider	the	following	algorithm:	Algorithm	5.15:	CRT-	OPTIMIZED	RSA	DECRYPTION	(​​	​	​	​	​	8​	​	8​	​	)	​​	​	​	​​​	​	​​	​	​	​​​	​	​	​	8​	​​​	​	8​	​​​	​​​	​	return	​	Algorithm	5.15	replaces	an	exponentiation	modulo	​	by	modular	exponentiations	modulo	​	and	​.	If	​	and	​	are	!-bit	integers	and	exponentiation	modulo	an	!-	Exercises	55	bit	integer	takes	time	'!​	,	then	the	time	to	perform	the	required
exponentiation(s)	is	reduced	from	'	!	​	to	'!​	,	a	savings	of	​!.	The	final	step,	involving	the	Chinese	remainder	theorem,	requires	time	4	!	​	if	​	​	​	​	8​	and	8​	have	been	pre-computed.	(a)	Prove	that	the	value	​	returned	by	Algorithm	5.15	is,	in	fact,	​	​​​	​.	Answer:	​	​	​	8​	​​​	​​​	​	​	​	​​​	​​​	​	​	​​	​​​	​	​	​	​​​	​	​	​	​​​	​​​	​​.	Similarly,	​	​	because	​	​​​	​	​	​​​	​​.	Therefore	​	​	​​​	​​.	(b)	Given	that	​	​​​​	and	​	​​​,	compute	​	,	​	,	8​	and	8​	.
Answer:	Note:	A	value	of	needs	to	be	specified	in	order	to	compute	​	and	​	.	Suppose	we	take	​	​	​	.	Then	​	​​	,	​	​​	​,	8​	and	8​	​	​.	(c)	Given	the	above	values	of	​	and	​,	decrypt	the	ciphertext	​​	​	using	Algorithm	5.15.	Answer:	Note:	Again,	needs	to	be	specified,	as	in	part	(b).	Using	​	​	​	,	we	obtain	​	​	,	​​	​​​	and	​	​	​	.	5.14	Prove	that	the	RSA	Cryptosystem	is	insecure	against	a
chosen	ciphertext	attack.	In	particular,	given	a	ciphertext	,	describe	how	to	choose	a	ciphertext	"	,	such	"	​	"	allows	​	​	to	be	computed.	that	knowledge	of	the	plaintext	​	​	​	HINT	Use	the	multiplicative	property	of	the	RSA	Cryptosystem,	i.e.,	that	​	​	​	​​	​​​	​	​	​	​​	​​​	​​​	Answer:	Choose	a	random	​	​	and	compute	​	​	​​	.	Define	"	​	​​​	​,	"	​	"	.	Then	compute	​	​"​	​	​​​	​.	and	obtain	the	decryption
​	5.15	This	exercise	exhibits	what	is	called	a	protocol	failure.	It	provides	an	example	where	ciphertext	can	be	decrypted	by	an	opponent,	without	determining	the	key,	if	a	cryptosystem	is	used	in	a	careless	way.	The	moral	is	that	it	is	not	sufficient	to	use	a	“secure”	cryptosystem	in	order	to	guarantee	“secure”	communication.	Suppose	Bob	has	an	RSA
Cryptosystem	with	a	large	modulus	​	for	which	the	factorization	cannot	be	found	in	a	reasonable	amount	of	time.	Suppose	Alice	sends	a	message	to	Bob	by	representing	each	alphabetic	character	as	an	integer	between	​	and	​	(i.e.,	​	​,	2	​,	etc.),	and	then	encrypting	each	residue	modulo	​	as	a	separate	plaintext	character.	(a)	Describe	how	Oscar	can	easily
decrypt	a	message	which	is	encrypted	in	this	way.	Answer:	Oscar	can	encrypt	each	of	the	​	possible	plaintexts,	and	record	the	values	of	the	corresponding	​	ciphertexts	in	a	table.	Then	any	ciphertext	string	can	be	decrypted	by	referring	to	the	precomputed	table.	​	​	56	The	RSA	Cryptosystem	and	Factoring	Integers	(b)	Illustrate	this	attack	by	decrypting
the	following	ciphertext	(which	was	encrypted	using	an	RSA	Cryptosystem	with	​	​​	​	and	​	​)	without	factoring	the	modulus:	​​​​	​​	​	​​	​	​​​​	​​​​	​​​​	​​	Answer:	The	plaintext	is	'​​&	​.	5.16	This	exercise	illustrates	another	example	of	a	protocol	failure	(due	to	Simmons)	involving	the	RSA	Cryptosystem	;	it	is	called	the	“common	modulus	protocol	failure.”	Suppose	Bob	has	an	RSA
Cryptosystem	with	modulus	​	and	encryption	exponent	​	,	and	Charlie	has	an	RSA	Cryptosystem	with	(the	same)	modulus	​	and	encryption	exponent	​	​	.	Suppose	also	that	​​​	​	​	​​	​.	Now,	consider	the	situation	that	arises	if	Alice	encrypts	the	same	plaintext	​	to	send	to	both	Bob	and	Charlie.	Thus,	she	computes	​​​	​​​	​	and	​	​​	​​​	​,	and	then	she	sends	to	Bob	and	​	to	Charlie.
Suppose	Oscar	intercepts	and	​	,	and	performs	the	computations	indicated	in	Algorithm	5.16.	Algorithm	5.16:	RSA	COMMON	MODULUS	DECRYPTION	(​​	​	​	​​	​	​	​	)	'	'​	​	​	​	​​​	​​	​	'	"​	"​	​​	​	​	​	​​​	​	return	​	(a)	Prove	that	the	value	​	computed	in	Algorithm	5.16	is	in	fact	Alice’s	plaintext,	​.	Thus,	Oscar	can	decrypt	the	message	Alice	sent,	even	though	the	cryptosystem	may	be
“secure.”	​.	Working	in	​,	we	have	that	Answer:	We	use	the	fact	that	​	​	'​	​	'	"​	​	"	​​​	"​	​​	"	​​​	"​	​​	"	​​	(b)	Illustrate	the	attack	by	computing	​	by	this	method	if	​	​​	​,	​	​,	​​	​	,	​	​	and	​	​	​	.	Answer:	'	​​	,	'​	​​,	and	​	​​​​​.	5.17	We	give	yet	another	protocol	failure	involving	the	RSA	Cryptosystem.	Suppose	that	three	users	in	a	network,	say	Bob,	Bart	and	Bert,	all	have	public	encryption	exponents	​
​.	Let	their	moduli	be	denoted	by	​	​	​​	​	​​	,	and	assume	that	​	​	​​	and	​​	,	are	pairwise	relatively	prime.	Now	suppose	Alice	encrypts	the	same	plaintext	​	to	send	to	Bob,	Bart	and	Bert.	That	is,	Alice	computes	​	​​	​​​	​​	,	​	​	​.	Describe	how	Oscar	can	compute	​,	given	​	​	and	​	,	without	factoring	any	of	the	moduli.	Answer:	Consider	the	following	system	of	three	congruences:	​	​	​	​​​	​	​	​
​	​​​	​​	​	​	​	​​​	​​	​	​	Using	the	Chinese	remainder	theorem,	it	is	easy	to	find	the	unique	solution	​	to	​	​	​	​​	​​	.	However	,the	integer	​​	is	a	solution	to	this	system	such	that	​	​	​	​	​	​​	​​	.	Since	the	system	has	a	unique	solution	the	same	system,	and	​	modulo	​	​​	​​	,	it	must	be	the	case	that	​	​	​	.	Therefore	​	​	​	.	​	​	Exercises	57	5.18	A	plaintext	​	is	said	to	be	fixed	if	​	​	​.	Show	that,	for	the	RSA
Cryptosys​	tem,	the	number	of	fixed	plaintexts	​	​	is	equal	to	​	​​​	​	HINT	​​	​	​	​​​	​	​​	​	​​​	Consider	the	following	system	of	two	congruences:	​	​	​	​	​​​	​​​	​	​	​	​	​​​	​​​	Answer:	​	​	​	if	and	only	if	​	​	​​​	​	​​	​	​	​​​	​​​	​​	and	​	​	First,	we	determine	the	number	of	solutions	​	​	​	to	the	congruence	​	​	​	​​​	​​.	Let	*	​	be	a	primitive	element.	Then	any	​	​	can	be	written	​	​	.	Further,	​​	​	uniquely	in	the	form	​	*​	​​​	​,	where	​	​	​​​	​	​​,	or	​	​	​	​	​​​	​	​​.	This	​​​	​
if	and	only	if	​​	congruence	has	​​​	​	​​	​	​	solutions,	namely	​	​	​	​	​	​​​	​	​​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​​​	​	​​	​	​​.	Therefore	​​	​	​​​	​	has	​​​	​	​​	​	​	​	solutions	​	​	.	​	Similarly,	​​	​	​​​	​	has	​​​	​	​​	​	​	solutions	​	​	.	Using	the	​	Chinese	reaminder	theorem,	it	is	clear	that	the	number	of	solutions	​	​	to	the	system	​	​	​	​​	​	​	​	​	​	​​​	​​​	​	​	​​​	​​​	is	exactly	​​​	​	​​	​	​	​​​	​	​​	​	​​.	5.19	Suppose	is	a	deterministic	algorithm	which	is	given	as	input	an	RSA	modulus	​,	will	either
decrypt	or	return	no	an	encryption	exponent	​,	and	a	ciphertext	.	answer.	Supposing	that	there	are	5	​	​	ciphertexts	which	is	able	to	decrypt,	show	how	to	use	as	an	oracle	in	a	Las	Vegas	decryption	algorithm	having	success	probability	5.	Answer:	Note:	You	should	assume	that	5	​	​	is	the	number	of	non-zero	ciphertexts	that	can	successfully	decrypt.
Suppose	we	are	given	​​	​	and	a	ciphertext	​.	If	​,	then	its	decryption	is	​	​.	If	​​​	​	​	​	​,	then	it	is	possible	to	factor	​,	in	which	case	can	easily	be	decrypted.	Therefore	we	suppose	that	​​​	​	​	​.	should	choose	a	random	​	Now,	the	algorithm	​,	​	​;	compute	​	​	​​​	​;	and	compute	​	​​​	​.	Then	call	the	algorithm	with	input	​​	​​	​	.	If	returns	a	decryption	of	​	,	say	​​	,	then	​	​​	​	​​​	​.	We	need	to	analyze
the	success	probability	of	.	If	​​​	​	​	​	​,	then	has	success	probability	equal	to	​.	If	​​​	​	​	​,	then	​	is	a	random	non-zero	element	of	​,	so	the	success	probability	is	5	​	​	​	​	5.	Therefore,	for	any	input	,	the	success	probability	of	is	greater	than	5.	5.20	Write	a	program	to	evaluate	Jacobi	symbols	using	the	four	properties	presented	in	Section	5.4.	The	program	should	not	do
any	factoring,	other	than	dividing	out	​	​	​	58	The	RSA	Cryptosystem	and	Factoring	Integers	powers	of	two.	Test	your	program	by	computing	the	following	Jacobi	symbols:	​	​	​	​​​	​​​	​	​	​​	​	​	​	​​	​​​	​​​​​​​​	Answer:	The	three	Jacobi	symbols	are	​,	​	and	​,	respectively.	5.21	For	​	​​	,	​​​	and	​​​​,	find	the	number	of	bases	​	such	that	​	is	an	Euler	pseudo-prime	to	the	base	​.	Answer:	The	number
of	bases	​	is	​​,	and	​	respectively.	5.22	The	purpose	of	this	question	is	to	prove	that	the	error	probability	of	the	SolovayStrassen	primality	test	is	at	most	​	.	Let	​​	denote	the	group	of	units	modulo	​.	Define	​	​	​	​	​	​	​​​	​​​	​	3	​	​	​	​	​	​	​	​	​	.	Hence,	by	Lagrange’s	theorem,	if	(a)	Prove	that	3	​	is	a	subgroup	of	3	​	​​	,	then	​	Answer:	Suppose	that	and	​	​3	​​​	​	​	​	​	​	​	​	​	​​	​	​​	3	​	​.	Then	​	​	​​​	​	​	​	​	​	​	​​​	​	​​​	​​​	It
follows	from	the	multiplicative	rule	of	Jacobi	symbols	(page	176,	property	3)	that	​	​	​	​	​	​	​	​	​​​	​	​​​	​	​	​	​	​	​​​	​​​	​	​	Therefore	​	​	3	​​.	Since	3	​	is	a	subset	of	a	multiplicative	finite	group	​	​	that	is	closed	under	the	operation	of	multiplication,	it	must	be	a	subgroup.	(b)	Suppose	​	​	​,	where	​	and	​	are	odd,	​	is	prime,	​	,	and	​​​	​​	​	​.	Let	​	​	​	​.	Prove	that	​	​	​	HINT	​​	​	​	​​​	​​​	Use	the	binomial	theorem	to
compute	​	Answer:	We	have	that	​	​	​	Suppose	that	​	This	implies	that	​	​	​	​	​	​	​	​	​	​	​	​	On	the	other	hand,	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​​​	​​​	​​​	​​.	Then	​	​	​	​	​	​​​	​​​	​	​​	​	​	​	.	​​	​	​	​​	​​​	Exercises	59	​	​	​	and	hence	​	​	​	​​​	​​.	But	​	​	​	​​​	​​,	so	we	have	a	contradiction.	(c)	Suppose	​	​	​	​	​	​​	,	where	the	​​	’s	are	distinct	odd	primes.	Suppose	​	7	​​​	​	and	​	​	​​​	​​	​​	​	​	​	​​	,	where	7	is	a	quadratic	non-residue	modulo	​	(note	that	such	an	exists	by	the	Chinese
remainder	theorem).	Prove	that	​	​	​	​	​​​	​​​	​​	​	but	​	so	​	​	​	​	​​​	​​	​​	​	​	​	​​	​	​​	​	​	​​​	​​​	Answer:	On	one	hand,	we	have	​	​	​	If	​	​	​	​	​	​​	​​	​	​	​	​​	​​	​	​	​	​	​​​	​​,	then	​	​	​	​	​​​	​​	​​	​	​	​	​​​.	But	​	​	​​​	​​	​​	​	​	​	​​	,	so	we	conclude	that	​	​	​​	​	​	​	​​​	​​,	and	hence	​	​	​	​​	​	​	​	​​​	​​​	​​	(d)	If	​	is	odd	and	composite,	prove	that	3	​	​	​	.	Answer:	This	follows	immediately	from	the	results	proven	in	parts	(a),	(b)	and	(c).	If	​	is	the	product	of	distinct	primes,	then	(c)	shows	that
3	​	​	​	.	Otherwise,	(b)	establishes	the	same	result.	Then	the	result	shown	in	(a)	can	be	applied.	(e)	Summarize	the	above:	prove	that	the	error	probability	of	the	Solovay-Strassen	primality	test	is	at	most	​	.	Answer:	Suppose	​	is	composite.	If	​​​	​	​	​,	then	the	SolovayStrassen	test	returns	the	correct	answer.	If	​​​	​	​	​,	then	the	Solovay3	​​.	We	proved	Strassen	test
returns	the	wrong	answer	if	and	only	if	​	​	,	so	the	probability	of	a	wrong	answer	is	in	part	(d)	that	3	​	at	most	​	​	​	​	3	​	3	​	​	​	​	​​	​	​	​	​	​	​	​	​	​	5.23	Suppose	we	have	a	Las	Vegas	algorithm	with	failure	probability	5.	(a)	Prove	that	the	probability	of	first	achieving	success	on	the	​th	trial	is	​	​	5​	​	5​.	Answer:	The	probability	of	​	​	failures	followed	by	a	success	is	​	​	​	​	​​	​	​	​	5​	​	​	​	​	​	​	​	​​	5​​	(b)
The	average	(expected)	number	of	trials	to	achieve	success	is	​	​	​	​​	​	Show	that	this	average	is	equal	to	​	​	5​.	60	The	RSA	Cryptosystem	and	Factoring	Integers	Answer:	​	​	​	​​	​	​	​5​	​	5	​	5	5	​	​	​	5	​	​	​	​	​	​	​	​	​	​	​	​	​	5​	​	5​	5​	5	5​	​	​	​	5	(c)	Let	Æ	be	a	positive	real	number	less	than	​.	Show	that	the	number	of	iterations	required	in	order	to	reduce	the	probability	of	failure	to	at	most	Æ	is	​	​	​​​
​	Æ	​	​​​	​	5	Answer:	Note	the	number	of	iterations	should	be	​	​	​​​	​	Æ	​	​​​	​	5	The	probability	of	success	after	at	most	​	trials	is	​	​	​	5​	​	​​	​	Therefore,	the	probability	of	failure	after	​	trials	is	5​	.	We	want	to	have	5​	Æ,	which	is	equivalent	to	​	​​​	​	5	​​​	​	Æ.	Because	​​​	​	5	​	​,	this	is	the	same	as	​​​​	Æ	​	​	​​​	​	5	Since	​	is	an	integer,	we	require	​	​	​​​	​	Æ	​	​	​​​	​	5	5.24	Suppose	throughout	this	question	that	​
is	an	odd	prime	and	​​​	​	​	​.	and	​	​	​​​	​​	.	Prove	that	there	is	a	unique	(a)	Suppose	that	​	​	​	and	​	​	such	that	​	​​​	​	​	​​​	​​	.	Describe	how	​	​	this	​	can	be	computed	efficiently.	​​​	​​	,	we	have	that	​	​	​​	for	some	Answer:	Since	​​	​	integer	.	Since	​	​	​​​	​	,	we	can	write	​	​​	​	​	for	some	integer	.	Now	we	compute	​	​	:	​	​	​	​	​	​	​	​	​​	​​	​	​​​	​	​​	​	​	​	​	​​	​	​​	​	​	​	​	​​	​	​​	​	​	​	​​	Exercises	61	​	​	Therefore	​​	​​	​	​	​	​​​	​​	,	so	​​	​​​	​​	if	and	​	​​​	​​.	This	is	true	if	and	only
if	​	only	if	​	​	​​​	​​.	(b)	Illustrate	your	method	in	the	following	situation:	starting	with	the	congru​	​​​	​​​,	find	square	roots	of	​	modulo	​​	​	and	modulo	ence	​	​	​​​	.	Answer:	​​	​	​	​​,	so	​.	Then	​	​	​	so	​	​	​​​	​​	​	​	​​​	​​	​​​	​	​	​​	​​	​	​	​	​​	​​​	​​​​​	Next,	​​​	​	​	​	​​​,	so	​	​.	Then	​	​	​	​​​	​​	(there	is	no	need	to	recalculate	​	​​​	​),	so	​	​	​​​	​	​​	​​​	​​​	​	​​	​​​	​​​	​	​	(c)	For	all	​	​,	prove	that	the	number	of	solutions	to	the	congruence	​	​	​​​	​​	is	either	​	or	.	Answer:	The	proof
is	by	induction	on	​.	For	​	​,	the	congruence	​	​	​​​	​	has	no	solutions	​	or​	two	solutions	in	​,	depending	on	the	value	of	the	Legendre	symbol	​	.	The	result	proved	in	part	(a)	establishes	that	​	the	number	of	solutions	modulo	​	​	is	the	same	as	the	number	of	solutions	modulo	​​	,	for	all	​	,	so	the	result	follows	by	induction.	5.25	Using	various	choices	for	the	bound,	2	,
attempt	to	factor	​	​​​	and	​	​	​	using	the	​	​	method.	How	big	does	2	have	to	be	in	each	case	to	be	successful?	Answer:	When	​	​	​​​,	the	factor	​	​	is	computed	when	2	​​,	but	not	when	2	​	.	(Note	that	​	​​​	​	​	​​​	and	​	​	​	​	​​.	This	illustrates	why	2	​​	is	sufficient	to	find	the	factor	​	​.)	When	​	​	​	​	,	the	factor	​​​	is	computed	when	2	,	but	not	when	2	​.	(Note	that	​	​	​	​​​	​​	and	​​​	​​	.	This	illustrates	why	2	is
sufficient	to	find	the	factor	​​​.)	5.26	Factor	​	​​​,	​	​	​	and	​​​​​	​​​	using	the	P	OLLARD	RHO	ALGORITHM,	if	the	function	​	is	defined	to	be	​	​	​	​	​	​.	How	many	iterations	are	needed	to	factor	each	of	these	three	integers?	Answer:	When	​	​	​​​,	we	get	​​​	​​​	​	​​​	​	​​	​	​​​	​​​	​	​​	​	​	​​​	​​​​	and	​	​​​	​	​​	When	​	​	​	​	,	we	get	​​​	​​​​	​​	​	​​	​​	​​	​​	​​​	​​​​	​	​​	​​	​​	​	​​​	​​​​	and	​	​​​	​​	​	62	The	RSA	Cryptosystem	and	Factoring	Integers	When	​	​​​​​	​​​,	we	get	​	​​	​	​​​​	​​​​	​	​	​	​​	​​​	​	​​​	​	​	​	​​	​​​​​	​​​
​	​​​​	and	​	​	​​​	​	​​​​	5.27	Suppose	we	want	to	factor	the	integer	​	​​​​​	using	the	R	ANDOM	SQUARES	ALGORITHM	.	Using	the	factor	base	​​	​	​​	​​	​	​​​	​​​	​	​	​​​	​​	​​	​​	​	​	​	test	the	integers	​	​	​​​	​	for	​	​​​​	​​​​	​	​	​	,	until	a	congruence	of	the	form	​​	​	​​​	​	is	obtained	and	the	factorization	of	​	is	found.	Answer:	The	following	factorizations	over	the	factor	base	are	obtained:	​	​​​​	​​​	​	​	​	​​	​​	​​	​	​​​	​	​	​	​​	​​	​​​​	​​​	​	​	​	​​​	​	​​	​​​	​	​	​​	​​​​	​​​	​	​	​	​​	​​​​	​​​	​	​	​​	​​​	​​​​	​​​	​	​	​​	​​	The	first
dependence	relation	that	is	obtained	is:	​​​	​​	​​​	​​​​​	​	​	​​	​​	​​	​​​​	​​​	​​​	The	expressions	inside	the	parentheses	simplify	to	give	​​​​​	​	​​​​​​	​​​	​​​	then	we	compute	​​​	​​​​	​	​​​​​​	​	​​	and	​​​	​​​​	​​​​​​	​	​	,	so	​	​​	​	.	5.28	In	the	R	ANDOM	SQUARES	ALGORITHM,	we	need	to	test	a	positive	integer	​	​	​	​	to	see	if	it	factors	completely	over	the	factor	base	​​	​	​	​	​	​	​#	​	consisting	of	the	2	smallest	prime	numbers.	Recall	that	​	#	​	​	​	and	​	​	​	.
(a)	Prove	that	this	can	be	done	using	at	most	2	​	​	divisions	of	an	integer	having	at	most	​	bits	by	an	integer	having	at	most	​	bits.	Answer:	Consider	the	following	algorithm:	Algorithm:	T	RIAL	D	IVIDE	(​​	​	​	​	​	​	​	​#	)	​​	​​	​	​	​	to	2	​	​	​	​	for	​	​	while​​​	​​	​​	​	​​	​​	do	​	​	​	​	​	return	​	​	​	​	​	#	​	​​	do	​	At	the	end	of	T	RIAL	D	IVIDE,	we	have	that	​	​	$​	​#	$	​​	​	Exercises	63	where	​​	is	not	divisible	by	any	of	​	​	​
​	​	​	​#	.	The	number	of	divisions	performed	in	the	algorithm	is	2	​	​	​	#	​	We	have	that	​	​	​	​	$​	so	​#	$	​	$​	$	​	​	​	#	​	​​​​	​	​	​​	Therefore	the	number	of	divisions	is	(approximately)	at	most	2	​	​.	(b)	Assuming	that	​	​	​,	prove	that	the	complexity	of	this	test	is	4	​​​​.	Answer:	Each	division	takes	time	4	​​	(see	page	191).	Therefore	the	total	time	is	4	​​	2	​	​	.	However,	2	​	​	and	we	are	assuming
that	​	​	​.	Therefore	2	​	​	is	4	​	and	the	total	time	is	4	​​​​.	5.29	In	this	exercise,	we	show	that	parameter	generation	for	the	RSA	Cryptosystem	should	take	care	to	ensure	that	​	​	is	not	too	small,	where	​	​​	and	​	​	​.	(a)	Suppose	that	​	​	​	​,	and	​	​​.	Prove	that	​	​	​	is	a	perfect	square.	Answer:	​	​	​	​​	​	​	​	​	​	​	​	​	​	​	.	(b)	Given	an	integer	​	which	is	the	product	of	two	odd	primes,	and	given	a
small	positive	integer	such	that	​	​	​	is	a	perfect	square,	show	how	this	information	can	be	used	to	factor	​.	Answer:	Suppose	​	​	​	​​	.	Then	​	​	​	​	.	(c)	Use	this	technique	to	factor	​	​​​	​	​​​	​​​​​.	Answer:	​	​	​​	​	​​	​	​	,	and	so	​	​	​​	​	​	​	​​	​	​	​	​	​​	​​	​	​​​​​​	5.30	Suppose	Bob	has	carelessly	revealed	his	decryption	exponent	to	be	​	​​​	in	an	RSA	Cryptosystem	with	public	key	​	​​​​​	and	​	​	​.	Implement	the	randomized
algorithm	to	factor	​	given	this	information.	Test	your	algorithm	with	the	“random”	choices	​	​​​​	and	​	​​	​​.	Show	all	computations.	Answer:	We	have	that	​	​	​​​​​	​​	​	​​	​​,	so	​	​​	​​.	​	​​​	​​,	so	the	algorithm	When	​	​​​​,	we	get	(	​​​​​	and	(	​	fails.	​	​​​	​​,	(​	​	​	When	​	​​	​​,	we	get	(	​​	,	(	​	​	​​​	​	and	(	​	​​​	​​.	Hence	the	algorithm	succeeds:	​	​	​	​	​​​	​	​	​	​​	​	​​	is	a	factor	of	​.	5.31	If	​	​	​	​	​	​	​​	is	the	sequence	of	quotients	obtained	in	the
applying	the	E	UCLIDEAN	ALGORITHM	with	input	​	​	​	​	,	prove	that	the	continued	fraction	​​	​	​	​	​	​	​​	​	​​	​	.	Answer:	From	the	Euclidean	Algorithm,	we	have	​​	​	​	​	​​	​	​	​	​	​	​	​​	..	..	..	.	.	.	​​	​​	​​	​	64	The	RSA	Cryptosystem	and	Factoring	Integers	​	We	will	prove,	by	reverse	induction	on	​	,	that	​​	​	​	​	​	​	​	​​	​	​​	​​	for	​	​	​.	The	base	case	is	​	​,	where	​​	​	​	​​	​​	​​	.	Assume	the	formula	is	true	for	​	​	​	​,	and	then
prove	it	is	true	for	​	​.	From	the	Euclidean	Algorithm,	we	have	​	​​	​​	​​	​	​​	​	so	​​	​​	​​	​	​​	​​	​​	​	​	​​	​​	​​	​	​	​​​	​	​	​	​	​	​​	​	(by	induction)	​​​	​	​​	​	​	​	​	​	​​	​​	​	​	By	induction,	the	result	is	true	for	​	​	​.	Setting	​	​,	we	see	that	​​	​	​​	​	​​​​	​​	​,	as	desired.	5.32	Suppose	that	​	​​	​	​​​​	and	​	​​	​​​	in	the	RSA	Cryptosystem.	Using	W	IENER	’	S	ALGORITHM,	attempt	to	factor	​.	Answer:	The	continued	fraction	expansion	of	​	​	is	​​​	​	​​	​​	​​​	​​	​​	​​​	​​	​	​​	​​	​​	​​	The	first
few	convergents	are	​,	​	,	​	​	,	​​	​,	etc.	If	we	let	'	​​	and	​,	then	we	obtain	the	quadratic	equation	​	​	​	​​​​	​	​​	​	​​​​	​.	This	equation	has	roots	​	​	and	​​	​,	which	are	the	factors	of	​.	5.33	Consider	the	modification	of	the	Rabin	Cryptosystem	in	which	​	​	​	​	​	2	​​​	​,	where	2	​	is	part	of	the	public	key.	Supposing	that	​	​​​,	​	​​,	​	​​	and	2	​​​	,	perform	the	following	computations.	(a)	Compute	the
encryption	​	​	​	.	Answer:	​	​	​	​	​	​​​	​​​	​​​​	​​​	.	(b)	Determine	the	four	possible	decryptions	of	this	given	ciphertext	.	Answer:	2	​​​	​	​​	​	and	2	​	​​​	​	​​	​.	The	decryptions	are	​	​​​	​​	​	​​​	​.	To	find	one	square	root	of	​​​	modulo	​,	compute	​​​	​	​	​​​	​	​​	and	​​​​​	​	​​​	​	​​.	Then	use	the	Chinese	remainder	theorem	to	solve	the	system	'	​​	​​​	​​,	'	​​	​​​	​​,	yielding	'	​​​​	​​​	​​.	A	second	square	root	is	obtained	by	using	the	Chinese	remainder
theorem	to	solve	the	​​	​​​	​​,	yielding	'	​	​	​​​	​​.	system	'	​​	​​​	​​,	'	The	other	two	square	roots	are	the	negatives	(modulo	​)	of	the	first	two	square	roots.	Therefore	we	obtain	four	square	roots,	namely	​​​​,	​	​​,	​	​	and	​​​​.	The	four	decryptions	of	are	​	​​​,	​	​	,	​	​​	and	​​​​	.	5.34	Prove	Equations	(5.3)	and	(5.4)	relating	the	functions	​​	!	and	​	&	.	Answer:	Denote	​	​​,	where	​	​	​	​.	First,	suppose	that	​​	!	​.
Then	​	​	​	​	,	and	hence	​	​	​	​.	Then	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​	​​​	​​​	Therefore	​	&	​	​​​	​	​,	because	​	is	even.	Conversely,	suppose	that	​	&	​	​​​	​	​.	This	implies	that	​	​​​	Exercises	65	​	is	even,	where	​	​	​	​	​.	However,	​	​	​​​	​	​	​	if	​	​	​	​	​	​	if	​	​	​	​	​.	​	Because	​	is	odd,	we	see	that	​	​​​	​	is	even	if	and	only	if	​	​	​	​	.	This	implies	that	​​	!	​.	Now	we	turn	to	the	other	identity.	First,	suppose	that	​	&	​.	Then	​	is	even,	and	hence	​	​	​	​	,
where	​	is	an	integer.	Then	​	​	​	​	​	​	​	​	​	​​​	​​​	Therefore	​​	!	​	​​​	​	​.	Finally,	suppose	that	​​	!	​	​​​	​	​.	This	implies	that	​	​	​​​	​	​	​	,	where	​	​	​	​.	However,	​	​	​	​​​	​	​	if	​	is	even	​	​	​	​	if	​	is	odd.	We	see	that	​	​​​	​	​	​	if	and	only	if	​	is	even.	This	implies	that	​	&	​.	5.35	Prove	that	Cryptosystem	5.3	is	not	semantically	secure	against	a	chosen	ciphertext	attack.	Given	​	,	​​	,	a	ciphertext	​	​	that	is	an	encryption	of	​	​	(​	​
or	),	and	given	a	decryption	oracle	D	ECRYPT	for	Cryptosystem	5.3,	describe	an	algorithm	to	determine	whether	​	​	or	​	.	You	are	allowed	to	call	the	algorithm	D	ECRYPT	with	any	input	except	for	the	given	ciphertext	​	​	,	and	it	will	output	the	corresponding	plaintext.	Answer:	Choose	a	random	value	​	​,	define	​	​	​	,	and	call	D	ECRYPT	​	​	.	The	oracle	outputs	a
value	​,	where	​	3	​	​.	But	​	​	​	​	​	​	​	3	​	​	​​	​	​​	where	​	​	or	.	Therefore	​​	​	​	​	where	​	and	​	are	known,	and,	hence,	it	is	easy	to	determine	the	correct	value	of	​.	6	Public-key	Cryptosystems	Based	on	the	Discrete	Logarithm	Problem	Exercises	6.1	Implement	S	HANKS	’	ALGORITHM	for	finding	discrete	logarithms	in	​​	,	where	​	is	prime	and	*	is	a	primitive	element	modulo	​.	Use
your	program	to	find	​​​	​​	​	​	​	in	​​​​	​	and	​​​	​	​​​​	in	​​​​​​​	.	Answer:	When	​	​	​	​,	we	have	​	​​​.	We	find	that	​	​	​,	​	​​	and	​​​	​​	​	​	​	​​	.	When	​	​​​​​,	we	have	​	​	.	We	find	that	​	​	​,	​	​	​	and	​​​​	​​​​	​	​​​.	6.2	Describe	how	to	modify	S	HANKS	’	ALGORITHM	to	compute	the	logarithm	of	;	to	the	base	*	in	a	group	3	if	it	is	specified	ahead	of	time	that	this	logarithm	lies	in	the	interval	​​​	​​,	where	​	and	​	are	integers	such	that	​	​
​	​	​	​,	where	​	is	the	order	of	*.	Prove	that	your	algorithm	is	correct,	and	show	that	its	complexity	is	4	​	​	.	​​​	​​	if	and	only	if	​​​%	<	Answer:	Define	<	*	​;	.	Then	​​​	%	;	​​​	​	​​.	It	suffices	to	compute	​​​	%	<	using	S	HANKS	’	ALGORITHM	with	​	​	​	​	​	,	and	then	calculate	​​​	%	;	​​​	%	<	​	​.	The	proof	of	correctness	is	essentially	the	same	as	the	proof	of	correctness	of	S	HANKS	’
ALGORITHM	given	in	Section	6.2.	The	complexity	of	the	algorithm	is	4	​	​	​	​	4	​	​​.	6.3	The	integer	​	​​​​​	is	prime	and	*	has	order	​	​​	in	​​.	Use	the	P	OL	​	LARD	RHO	ALGORITHM	to	compute	the	discrete	logarithm	in	​	of	;	​​​​​	to	the	base	*.	Take	the	initial	value	​	​	​,	and	define	the	partition	&	​	&​	​	&​	as	in	Example	6.3.	Find	the	smallest	integer	​	such	that	​	​	​​​	,	and	then
compute	the	desired	discrete	logarithm.	Answer:	​​​​	​​​	​​,	​​​	​​​,	​​​​	​​​​	,	​​​​	​​​	​​,	​​​	​	​​	and	​	​​​	​​​​.	Thereore,	​​​	%	;	​​​	.	6.4	Suppose	that	​	is	an	odd	prime	and	​	is	a	positive	integer.	The	multiplicative	group	​	​	​​,	and	is	known	to	be	cyclic.	A	generator	for	this	group	​	has	order	​	is	called	a	primitive	element	modulo	​	.	(a)	Suppose	that	*	is	a	primitive	element	modulo	​.	Prove	that	at	least	one	of	*
​	​	​​	​	​	​	66	​	​	Exercises	67	or	*	​	​	is	a	primitive	element	modulo	​​	.	Answer:	Suppose	that	*	has	order	​	​	in	​​	.	Let	​	denote	the	order	​	​​​	​​	implies	*​	​	​​​	​​,	so	​	​	of	*	in	.​	​	.	*​	​​​	​	​​.	Also,	​	divides	​	​	​​	​.	Therefore	​	​	​	or	​	​​	​.	If	​	​​	​,	then	we’re	done,	so	assume	​	​	​.	Now	consider	*	​	​.	By	the	same	argument,	*	has	order	​	​	or	​	​	​	in	​	​	.	We	show	that	*	​	​	cannot	have	order	​	​,	which	finishes	the	proof.
We	expand	*	​	​	​	using	the	binomial	theorem:	​	*	​	​​​	​	*​	​	​	​​*​	Reducing	modulo	​	​	,	we	see	that	*	​	​​​	​	​	*​	​​	​	​	​	​	​	terms	divisible	by	​​	​	​*​	​*​	​	​	​	​​​	​​	​​​	​​	​	​	Therefore	*	​	​​​	​	​​​	​​	if	and	only	if	*​	​	​	​​​	​​.	However,	​​​	*​	​	​.	Therefore,	*	​	​	does	not	have	order	​	​,	and	we’re	done.	(b)	Describe	how	to	efficiently	verify	that	​	is	a	primitive	root	modulo	​	and	modulo	​​	.	Note:	It	can	be	shown	that	if	*	is	a	primitive
root	modulo	​	and	modulo	​​	,	then	it	is	a	primitive	root	modulo	​	for	all	positive	integers	​	(you	do	not	have	to	prove	this	fact).	Therefore,	it	follows	that	​	is	a	primitive	root	modulo	​	for	all	positive	integers	​.	Answer:	​	​	.	To	show	that	​	is	primitive	modulo	​,	it	suffices	to	show	that	​​​	​	and	​​​	​	are	not	congruent	to	​	modulo	​.	Since	​	​	​​​	​	and	​​	​	​​​	​​,	we	conclude	that	​	is
primitive	modulo	​.	As	shown	in	(a),	the	order	of	​	in	​​	​	is	either	​	or	​	​.	To	show	that	​	is	a	primitive	element,	it	suffices	to	show	that	​	​​	is	not	congruent	to	​	modulo	​​	.	Since	​​​	​​​	​​	​​,	we’re	done.	(c)	Find	an	integer	*	that	is	a	primitive	root	modulo	​	but	not	a	primitive	root	modulo	​​	.	Answer:	It	suffices	to	find	a	value	*	such	that	*	​​	​	and	*​​	​	are	not	​	​​​	​​	.	We	have	​	​	​
congruent	to	​	modulo	​;	but	*	​​	​	​	​​​	​	and	​	​​	​	​​​	​​	,	so	*	​	is	​​​	​​​,	​	such	an	integer.	(d)	Use	the	P	OHLIG	-H	ELLMAN	ALGORITHM	to	compute	the	discrete	logarithm	of	​​	to	the	base	​	in	the	multiplicative	group	​​​​​​	.	Answer:	​​​​​​	​​	​	​​	​	.	Let	denote	the	desired	discrete	logarithm.	We	need	to	compute	​​​	​	​	,	​​​	​	and	​​​	.	We	obtain:	​	​	​	​	​	​	​	​	​	​​	​​​	​​	​	​​​	​	​	​​​	​	Applying	the	Chinese	remainder	theorem,	​​	​	.	6.5
Implement	the	P	OHLIG	-H	ELLMAN	ALGORITHM	for	finding	discrete	logarithms	in	​,	where	​	is	prime	and	*	is	a	primitive	element.	Use	your	program	to	find	68	Public-key	Cryptosystems	Based	on	the	Discrete	Logarithm	Problem	​​​​	​​​​	in	​​​​​	and	​​​	​	​	​​​	in	​	​​.	Answer:	​	​	​​​	​	.	We	find	that	​​​​	​​​​	​	​​​	​	​	​​​​	​​​​	​	​	​​​	​​​​​	​​​​	​​​​	​	​​	​​​	​	​	and	Using	the	Chinese	remainder	theorem,	​​​	​	​​​​	​​​​.	​​​​	​	​	​​	​​	.	We	find	that	​​​	​	​	​​​	​	​​​	​​​​	​	​​​	​	​
​​​	​	​​​	​​​	​​​	​	​	​​​	​	​	​​​	​​​​	​​​	​	​	​​​	​	​​	​​​	​​​​	and	Using	the	Chinese	remainder	theorem,	​​​	​	​	​​​	​	​​	.	6.6	Let	​	.	The	element	*	is	primitive	in	​​	.	(a)	Compute	*​​	,	*​​	,	*​​	and	*	​​	modulo	​,	and	factor	them	over	the	factor	base	​	​​	​​	​	​​	.	​	​	​	​​,	​​	​​​	​	​​,	​​	​​	Answer:	​​	​	​​	​	​	​	and	​	(b)	Using	the	fact	that	​​​	​,	compute	​​​	​,	​​​	​,	​​​	and	​​​	​​	from	the	factorizations	obtained	above	(all	logarithms	are	discrete	logarithms	in	​​	to	the	base	*).	Answer:
​​​	​,	​​​	​	​,	​​​	​	​​,	​​​	​​	and	​​​	​​	​.	(c)	Now	suppose	we	wish	to	compute	​​​	​	​.	Multiply	​	​	by	the	“random”	value	​​	​​​	​.	Factor	the	result	over	the	factor	base,	and	proceed	to	compute	​​​	​	​	using	the	previously	computed	logarithms	of	the	numbers	in	the	factor	base.	​​​	​	​	.	Therefore,	​​​	​	​	​​​	​	Answer:	​	​	​​	​​​	​	​	​​​	​	​​​	​	​.	6.7	Suppose	that	​	​​	is	an	RSA	modulus	(i.e.,	​	and	​	are	distinct	odd	primes),	and	​	​	let	*	​	.
For	a	positive	integer	​	and	for	any	*	​	,	define	​​	​	*	to	be	​	the	order	of	*	in	the	group	​	.	(a)	Prove	that	​​	​	*	​​​	​​	​	*​​	​​	​	*	​	Answer:	This	follows	because	*	​	​	​​​	​	if	and	only	if	*​	​	​	​​​	​	and	*	​	​​​	​​.	(b)	Suppose	that	​​​	​	​​	​	​	.	Show	that	there	exists	an	element	​	*	​	such	that	​	​	​​	​	*	​	​	​	​	​	​	​	​	​	​	​	​	​	​	Answer:	Let	*​	be	a	primitive	element	modulo	​	and	let	*	​	be	a	primitive	element	modulo	​.	Using	the
Chinese	remainder	theorem,	there	exists	*	​	*	​	​​​	​	and	*	*​	​​​	​​.	Then	​​	​	*	​	such	that	*	​	​	and	​​	​	*	​	​.	Applying	the	result	proven	in	part	(a),	we	have	that	​	​	​	​	​	​	​​	​	*	​​​	​	​​	​	​	​	​​​	​	​​	​	​	​	​	​	Exercises	69	(c)	Suppose	that	​​​	​	​​	​	​	,	and	we	have	an	oracle	that	solves	​	the	Discrete	Logarithm	problem	in	the	subgroup	*	,	where	*	​	has	*	,	the	oracle	will	find	the	discrete	order	​	​	.	That	is,	given	any	;	​
​	​.	(The	value	​	​	is	logarithm	​​​	%	;	,	where	​	secret	however.)	Suppose	we	compute	the	value	;	*	​	​​​	​	and	then	we	use	the	oracle	to	find	​​​	%	;	.	Assuming	that	​	​	​	and	​	​	​,	prove	​	​​.	that	​	Answer:	Because	*	​	*	​​​	​	and	*	has	order	​	​	,	we	have	that	​	​​	​	for	some	integer	​.	Also,	​	​	​	​	,	so	there	is	a	unique	integer	​	such	that	​	​	​​	​	​	​	​	.	We	will	show	that	​	causes	this	inequality	to	be
satisfied,	which	will	complete	the	proof.	When	​	,	the	inequality	is	equivalent	to	the	following:	!	​	!	​	​	​	​	​	​	​​	​	​	Clearly	​	​	​	​,	so	it	suffices	to	show	that	​	​	​​	​​.	Assuming	WLOG	that	​	​	​,	and	using	the	fact	that	​	​	​,	this	is	equivalent	to	the	following:	​	​	​	​	​	​​	​	​	​	​	​	​​	​	​	​	​	​	​	​	​​	​	​​​	​​​	​	​	​	​	Because	​	​,	we	have	that	​	​	​	​	​	​.	However,	​	​	​	,	and	therefore	the	inequality	is	satisfied.	so	​	​	is	prime,	(d)	Describe
how	​	can	easily	be	factored,	given	the	discrete	logarithm	​​​%	;	from	(c).	.	Then,	given	​	Answer:	Given	,	it	is	simple	to	compute	​	​	​	and	​	​​,	it	is	straightforward	to	factor	​	by	solving	a	quadratic	equation,	as	described	in	Section	5.7.1.	6.8	In	this	question,	we	consider	a	generic	algorithm	for	the	Discrete	Logarithm	problem	in	​​	​​.	(a)	Suppose	that	the	set	-	is
defined	as	follows:	-	​	​	​​	​​​	​​​	​	​​​	​​	​	​	​​	​​	​	​	​	​	​​	Compute	​​	-	.	Answer:	observe	that	​	​	​​	​	​	​	​​	​	​	​	​	for	any	​	​	.	From	this	it	follows	that	​​	-	​​	​	​	​​​	​​	​	​​	​	​	​​​	​​	​	​	​	​	​​	​	​	​	​​	An	easy	computation	then	shows	that	​​	-	​​​	​​	​	​​	​	​​	​​	​	​​	​​	​​​	​	​	​​​	​	​	​​​​	(b)	Suppose	that	the	output	of	the	group	oracle,	given	the	ordered	pairs	in	-	,	is	70	Public-key	Cryptosystems	Based	on	the	Discrete	Logarithm	Problem	as	follows:	​	​​​​​	​​	​	​	​​​​​	​​​	​	​​​​​	​	​	​​​​​	​​	​	​​​​​	​​	​	​	​​​​​​	​​	​
where	group	elements	are	encoded	as	(random)	binary	​-tuples.	What	can	you	say	about	the	value	of	“	”?	Answer:	Because	the	encodings	are	all	different,	it	must	be	the	case	that	​​	-	.	Therefore	​​​	​​​	​	or	​​.	6.9	Decrypt	the	ElGamal	ciphertext	presented	in	Table	6.3.	The	parameters	of	the	system	are	​	​​​	,	*	​,	​​​	and	;	​​​	.	Each	element	of	​	represents	three	alphabetic
characters	as	in	Exercise	5.12.	The	plaintext	was	taken	from	“The	English	Patient,”	by	Michael	Ondaatje,	Alfred	A.	Knopf,	Inc.,	New	York,	1992.	Answer:	The	first	ciphertext	element,	​	​​​	​	​​​,	is	decrypted	to	the	plaintext	element	​​	​	​	​​	​	​​​​​​​	​​​	​​​	​	​​	​	​	​	​​	encodes	the	triple	​​​	​	,	which	corresponds	to	the	three	letters	"	,	​	​	​	.	The	complete	plaintext	is	as	follows:	She	stands	up	in
the	garden	where	she	has	been	working	and	looks	into	the	distance.	She	has	sensed	a	change	in	the	weather.	There	is	another	gust	of	wind,	a	buckle	of	noise	in	the	air,	and	the	tall	cypresses	sway.	She	turns	and	moves	uphill	towards	the	house.	Climbing	over	a	low	wall,	feeling	the	first	drops	of	rain	on	her	bare	arms,	she	crosses	the	loggia	and	quickly
enters	the	house.	6.10	Determine	which	of	the	following	polynomials	are	irreducible	over	​​​​:	​​	​	​​	​	​,	​​	​	​​	​	​,	​​	​	​​	​	​​	​	​.	Answer:	​​	​	​​	​	​	is	irreducible,	​​	​	​​	​	​	​​	​	​	​	​	​​	​	​	​	​	and	​​	​	​​	​	​​	​	​	​	​	​	​​	​	​	​	​​.	6.11	The	field	​​	can	be	constructed	as	​​​​	​​	​	​​	​	​​.	Perform	the	following	computations	in	this	field.	(a)	Compute	​​	​	​​	​​	​	​	​	​​.	Answer:	In	the	ring	​​​​,	we	have	that	​	​​	​	​​	​​	​	​	​	​	​​	​​	​	​​	​	​	​	​​	​	so	​​	​	​​	​​	​	​	​	​	​​	in	the	field	​​​​	​​	​	​​	​	​​.	(b)	Using	the
extended	Euclidean	algorithm,	compute	​	​	​	​​	.	Answer:	​​	​	​​	​​	​	​	​	​	in	the	field	​​​​	​​	​	​​	​	​​.	(c)	Using	the	square-and-multiply	algorithm,	compute	​	​​	.	Answer:	​​​	​​	​	​​	​	​	in	the	field	​​​​	​​	​	​​	​	​​.	6.12	We	give	an	example	of	the	ElGamal	Cryptosystem	implemented	in	​​	.	The	polynomial	​​	​	​​	​	​	is	irreducible	over	​​​​	and	hence	​​​​	​​	​	​​	​	​	​	Exercises	71	TABLE	6.3	ElGamal	Ciphertext	​	​​​	​	​​	​	​​​	​​	​​	​​​​​​	​	​	​​​​​​	​​	​	​​​​​​	​​​	​​​​​	​	​	​	​	​​​​	​​​	​​​	​	​​​​	​​​​​	​	​​	​	​​	​	​	​​​	​
​​	​​​​​	​​​​	​​	​	​​​	​​​​​	​​​	​	​	​​​	​​​	​​​​​​	​	​​​​​	​​​	​​	​	​​	​​	​​​	​	​	​	​​	​	​	​	​​	​​	​​​	​​	​​	​​	​​	​​	​​​​	​	​​​​	​​​​	​​	​​	​​​​	​​	​	​​	​	​​​​	​	​​​​	​​​​​​	​	​	​​​	​	​​	​​​​	​	​	​​​​​	​	​	​	​​	​​​​​	​​​​​	​	​​​	​​	​​	​​	​​	​​	​​​	​	​	​​	​​​	​	​​	​	​	​	​	​	​​​	​	​​	​	​	​​​​	​​​	​​​​	​​​​	​​​​​	​​​​	​	​​​	​​	​	​​​	​	​	​	​​​​​	​	​	​	​​	​	​​​	​	​	​​​​​	​	​​	​​​​​	​​	​	​​​	​​​	​	​​	​	​	​​	​​​​​​	​​	​	​	​	​​	​​​	​	​	​​​​​​	​​​	​​​​	​	​​​​​​	​​​​	​	​​	​​	​​​​	​	​​​	​	​​	​​	​​​​	​​​​​	​​​​	​	​​	​​​​​	​​​​​	​	​​	​	​	​	​	​	​​​	​​​​​	​​​​​​	​​	​	​	​​	​	​	​	​​​​	​​​	​	​​	​	​​	​	​​​​​	​​​	​	​	​​	​​​​	​​​	​​	​​​	​	​​​​	​​​	​​​​	​​	​​​​​​	​​	​	​​	​	​​​	​	​​	​​​​	​​​​​	​​	​​	​​	​​	​​​	​​	​	​​	​​​​​	​​	​	​	​​	​​	​​	​​​​​	​​​	​​​​​​	​​​	​	​​	​	​​​​​	​	​​	​​​​	​​​	​	​​	​	​	​​	​​​​	​​​​​	​	​​	​​​​​​	​​​	​​​​​	​​	​	​​​​	​​​​​	​​​	​	​​​​​	​​​​​​	​​	​	​​	​	​	​​	​	​	​	​	​​​	​​​​​​	​​​	​	​​​	​​​	​​	​​​	​​​	​	​	​	​	​	​​​	​​	​​​​	​	​​​	​​	​	​	is	the	field	​​	.	We	can	associate	the	26	letters	of	the	alphabet	with	the	26	nonzero	field	elements,	and	thus	encrypt	ordinary	text	in	a	convenient	way.	We	will	use	a
lexicographic	ordering	of	the	(nonzero)	polynomials	to	set	up	the	correspondence.	This	correspondence	is	as	follows:	2	​	-	​	​	​​​	6	​	​​	​	​	​	​	​	​	%	​	​	​	​	​	​​	​​	​	​	​	​​	​	​	​​​	​	​	​	​	​	​​​​	,	​	​	​​​	4	​	​	​	​	​​	​	​	​	​	>	​	​​	​	​	​	/	​	​​	​	​	​	​	​	$	​	​	​	?	​	​​	​	​	​​	​	​	​	​	A	​	​​	​	​	​	"	​	​​	​	​	​​	​	​	​	​	.	​	​​	​	​	​	Suppose	Bob	uses	*	​	and	​​	in	an	ElGamal	Cryptosystem	;	then	;	​	​	.	​	+	3	0	8	=	&	@	#	​	​	​	​	​	​	​	​	​	​	Show	how	Bob	will	decrypt	the	following	string	of	ciphertext:	(K,H)
(P,X)(N,K)(H,R)(T,F)(V,Y)(E,H)(F,A)(T,W)(J,D)(U,J)	Answer:	The	plaintext	is	​​	&"	(​	#	.	72	Public-key	Cryptosystems	Based	on	the	Discrete	Logarithm	Problem	6.13	Let	6	be	the	elliptic	curve	​	​​	​	​	​	​	defined	over	​	.	(a)	Determine	the	number	of	points	on	6	.	Answer:	#6	.	(b)	Show	that	6	is	not	a	cyclic	group.	Answer:	This	follows	from	part	(c).	If	6	were	cyclic,
there	would	be	points	having	order	,	but	there	are	no	such	points.	Alternatively,	the	result	proven	in	Exercise	6.14	can	be	applied,	because	​	​​​	​	has	three	solutions	(namely,	the	congruence	​	​	​	​	​	​	​	​	​​	and	​	).	(c)	What	is	the	maximum	order	of	an	element	in	6	?	Find	an	element	having	this	order.	Answer:	The	maximum	order	of	a	point	is	​​;	​	​	is	one	point	having
order	​​.	(6	is	isomorphic	to	​​	​.)	6.14	Suppose	that	​	​	​	is	an	odd	prime,	and	​	​	​.	Further,	suppose	that	the	​	​​​	​	has	three	distinct	roots	in	​.	Prove	that	the	equation	​	​	​	​	​	​	corresponding	elliptic	curve	group	6​	​	is	not	cyclic.	​	​	​	HINT	Show	that	the	points	of	order	two	generate	a	subgroup	of	6​	​	that	is	isomorphic	to	​	​.	Answer:	Let	​	​	and	​	be	the	three	roots,	which	must	be
distinct.	It	is	easy	to	show	that	​	​	​​,	​​	​	​	​	and	​​	​	​	​	are	three	distinct	points	on	6	having	order	.	​	​	​	​	​	(which	follows	because	the	coefficient	Using	the	fact	that	of	​​	in	the	cubic	equation	​	​	​	​	​	​	​	is	​),	it	is	straightforward	to	show	is	that	​	​	​​	​​	,	​	​	​​	​​	and	​​	​	​​	​	.	Hence	​	​	​​	​	​​	​	isomorphic	to	​	​.	Since	3	contains	a	subgroup	that	is	not	cyclic,	3	is	not	cyclic.	6.15	Consider	an	elliptic	curve
6	described	by	the	formula	​	​​	​	​	​	​	​​​	​​,	where	​	​	​​	​	​​​	​	and	​	​	​	is	prime.	(a)	It	is	clear	that	a	point	=	​	​	6	has	order	​	if	and	only	if	=	=	.	Use	this	fact	to	prove	that,	if	=	​	​	6	has	order	​,	then	​	​	​	​​	​	​​	​	​​	​	​	​	​	​	​	​	​	​	​	​​​	​​​	(6.7)	Answer:	The	​-coordinate	of	=	is	​	.	The	​-coordinate	of	=	is	​​	​	​	​	​	​	​	These	two	​-coordinates	must	be	equal	if	=	=	.	Hence,	​​	​	​	​	​	​​	​	​	​	​	However,	so	​​	​	​	​	​	​	​	​	​​	​	​	​	​	​	​	​	​	​	​​​	This	simplifies	to
give	the	equation	(6.7),	which	is	a	necessary	condition	for	=	to	have	order	​.	(b)	Conclude	from	equation	(6.7)	that	there	are	at	most	​	points	of	order	​	on	the	elliptic	curve	6	.	Exercises	73	Answer:	(6.7)	is	a	fourth	degree	equation,	which	has	at	most	four	roots	over	the	field	​.	For	each	root	​	of	(6.7),	there	are	at	most	two	values	of	such	that	​	​	is	a	point	on	6
.	The	total	number	of	points	on	6	having	order	​	is	therefore	at	most	​.	(c)	Using	equation	(6.7),	determine	all	points	of	order	​	on	the	elliptic	curve	​	​​	​	​	​	​​​	​​.	Answer:	The	equation	(6.7)	becomes	​	​​	​	​	​	​	​	​	​	​	​	​	​​​	​	​	​​	This	equation	factors:	​	or	​	​	​	​	​	​​	​	​	​​​	​​	​	​	​​​	​	​	​	​	​​​	​	​	​	​​​	​​​	​​​	​	​	​​​	​​​	​​	​	​​​	​​​	For	each	of	these	values	of	​	,	we	need	to	find	the	corresponding	values	of	(if	possible).	i.	If	​	​,	then	​	​​,	and	​	or	​​.	ii.
If	​	​,	then	​	​​,	and	​	or	​​.	iii.	If	​	,	then	​	,	and	​	or	​	.	iv.	If	​	,	then	​	​,	and	​	or	​​.	There	are	eight	possible	points	of	order	​,	namely	​​	​​,	​​	​​​,	​	​​,	​	,	​	​​,	​	​	,	​​	​	and	​​	​​​.	(It	can	be	verified	that	all	eight	of	these	points	do	in	fact	have	order	​.)	6.16	Suppose	that	6	is	an	elliptic	curve	defined	over	​,	where	​	​	​	is	prime.	Suppose	that	#6	is	prime,	=	6	,	and	=	.	(a)	Prove	that	the	discrete
logarithm	​​​	​	=	#6	​.	and	​	is	Answer:	Denote	#6	​.	The	order	of	=	divides	​,	=	prime,	so	the	order	of	=	must	be	equal	to	​.	Now	we	have	that	​=	=	​	​	​​=	.	But	we	also	have	=	​	=	,	so	=	​	​​=	and	​​​​	=	​	​.	(b)	Describe	how	to	compute	#6	in	time	4	​	​	by	using	Hasse’s	bound	on	#6	,	together	with	a	modification	of	S	HANKS	’	ALGORITHM.	Give	a	pseudocode	description	of
the	algorithm.	​	and	​	​	​	​	​,	Answer:	Let	=	6	,	=	.	Define	​	​	and	use	the	modification	of	S	HANKS	’	ALGORITHM	described	in	Exercise	6.2	to	find	​​​	​	=	.	(We	have	that	​​​	​	=	​	​,	where	​	​​	​	​​	​	​	​​,	so	​​​	​	=	​​​	​​.)	Note	that	the	interval	​​​	​​	contains	​	​	​	possible	values.	It	will	​	​	​	(this	ensures	that	be	the	case	that	​	​	​	provided	that	​	there	is	a	unique	element	of	the	interval	​​​	​​	that	is
congruent	to	modulo	​).	We	have	that	​	​	​	,	so	everything	is	all	right,	provided	that	​	​	​	​	​.	This	last	inequality	is	true	for	all	primes	​	​​.	For	the	primes	​	​	and	,	it	is	probably	simpler	to	directly	compute	the	value	of	​.	This	does	not	affect	the	asymptotic	complexity	of	the	algorithm,	which	is	4	​	​	4	​	​	by	Exercise	6.2.	​	​	​	​	​	​	​	​	​​	​	​	​​	​	​​	​	​​	​	​	​	​	​​	74	Public-key	Cryptosystems	Based	on
the	Discrete	Logarithm	Problem	6.17	Let	6	be	the	elliptic	curve	​	​​	​	​	​	defined	over	​	.	It	can	be	shown	that	#6	​​	and	=	​	​	is	an	element	of	order	​​	in	6	.	The	Simplified	ECIES	defined	on	6	has	​	​	as	its	plaintext	space.	Suppose	the	private	key	is	​	​.	(a)	Compute	>	​=	.	Answer:	​=	​​	​​​.	(b)	Decrypt	the	following	string	of	ciphertext:	​​​	​​​	​​​	​​	​​​	​​​​	​	​	​​​	​​​​	​​	​​​	​​​	Answer:	The	plaintext	is	​	​	​	​.	(c)
Assuming	that	each	plaintext	represents	one	alphabetic	character,	convert	the	​,	plaintext	into	an	English	word.	(Here	we	will	use	the	correspondence	​	​​​,	.	​,	because	​	is	not	allowed	in	a	(plaintext)	ordered	pair.)	Answer:	&	​	(a)	Determine	the	NAF	representation	of	the	integer	​	.	Answer:	The	NAF	representation	of	​	is	​​	​​	​​	​​	​​	​​	​​	​​.	(b)	Using	the	NAF
representation	of	​	,	use	Algorithm	6.5	to	compute	​	=	,	where	=	​	​	is	a	point	on	the	elliptic	curve	​	​​	​	​	​	​	defined	over	​​.	Show	the	partial	results	during	each	iteration	of	the	algorithm.	Answer:	The	algorithm	proceeds	as	follows:	​	​	6.18	​	​	​	​	​	​	'​	​	​	​	​	​	​	​	​	>	​	​	​​	​​​​​	​​​	​​​​	​	​	​​​​	​​​​	​​	​	​​​​	​​​​	​​​	​​​	​	​​​	​​​	​	​​​	Therefore	​	=	​​​	​	​​​.	6.19	Let	​	denote	the	set	of	positive	integers	that	have	exactly	​	coefficients	in	their
NAF	representation,	such	that	the	leading	coefficient	is	​.	Denote	​	​	​	.	(a)	By	means	of	a	suitable	decomposition	of	​	,	prove	that	the	​​	’s	satisfy	the	following	recurrence	relation:	​	​​	​	​	​	​	​​	​	​​	​	​	​​	​	​​​	​	​​	​​	(for	​	)​	Answer:	It	is	clear	that	​	​​	​.	For	any	​	​	,	let	​	denote	the	number	of	consecutive	zeroes	that	follow	the	initial	‘​’.	If	​	​,	then	the	NAF	representation	of	​	is	​​	​​	​	​	​	​	​​.	If	​	​	​,	then	let
denote	the	entry	that	follows	the	​	consecutive	zeroes	in	the	NAF	representation	of	​.	Clearly	​	or	​.	If	​,	then	the	last	​	​	entries	in	the	NAF	representation	of	​	form	the	NAF	representation	of	an	integer	in	​	​	.	Suppose	that	​.	If	we	change	this	‘	​’	to	a	‘​’,	then	the	last	​	​	entries	again	form	the	NAF	representation	of	an	integer	in	​	​	.	​​	​	​	​	Exercises	75	(b)	Derive	a
second	degree	recurrence	relation	for	the	​	​	’s,	and	obtain	an	explicit	solution	of	the	recurrence	relation.	Answer:	We	have	that	​​	​	​	​​	​	​​​	​	​​	​​	and	​​	​	​	​​	​	​​​	​	​​	for	​	​	​	​​	​.	Subtracting,	we	see	that	​​	​​	​​	​	​	​.	Also,	​	​​	​	and	​​	​.	This	recurrence	can	be	solved	by	standard	techniques;	the	solution	is	​	​​​	​	​	​	​	​​	​	​	(this	can	be	proven	by	induction).	6.20	Find	​​​	​	​​​	in	​​	using	Algorithm	6.6,	given	that	​	;	​
for	;	​,	​​	and	​	​,	and	​	;	​	for	;	​​​,	​​	,	​	​	and	​​​.	Answer:	We	obtain	the	following:	;	;	;	;	;	;	;	;	;	​​	​	​​	​​	​​	​​	​​	​​	​​​	​	​	​​​	​​	​​	​​​	​	​	​	​	​	​	​	​	​	​	​	​	Therefore	​​​	​	​​​	​​​​​​​​​	​	.	​	6.21	Throughout	this	question,	suppose	that	​	​	​​​	​	is	prime	and	suppose	that	is	a	quadratic	residue	modulo	​.	​	​​​	​​.	(a)	Prove	that	​	​	is	a	quadratic	residue,	so	​	​	​	​​​	​	by	Euler’s	Answer:	​	​​​	​​.	criterion.	Now	​	​	​	​	​	,	so	​	​	​	​	​	(b)	If	modulo	​.	Answer:	​	​	​	​​​	​​,	prove	that	​	​	​	​	​
​	​	​	​	​	​	​	​	(c)	If	​	​	​	​​​	​​,	prove	that	root	of	modulo	​.	HINT	Use	the	fact	that	​​​	​	​	​​​	​	is	a	square	root	of	​	​	​	​	​	​	​​​	​​​	​​​	​	is	a	square	​	when	​	​	​	​​​	​	is	prime.	76	Public-key	Cryptosystems	Based	on	the	Discrete	Logarithm	Problem	Answer:	​	​	​	​	​​​	​	​	​	​	​	​	​	​​​	​	​	​	​	​	​	​​​	​	​	​	​	​	​	​​​	​	​	​	​	​​​	​	​	​​​	​​​	​	​​	,	and	given	any	;	​	​​	,	show	that	​	​	​	​	(d)	Given	a	primitive	element	*	​	;	can	be	computed	efficiently.	HINT	Use	the	fact	that	it	is
possible	to	compute	square	roots	modulo	​,	​	;	​	;	for	all	;	​	as	well	as	the	fact	that	​	,	when	​	​​​	​	is	prime.	​	​	;	Answer:	Let	​​​	%	;	.	Then	​	​	​	​	,	where	​	and	​	;	.	It	is	possible	to	compute	​	efficiently	(see	page	262).	Let	;​	;	*	​	;	then	​​​	%	;​	​	​	.	Next,	compute	a	square	root	;	of	;​	using	the	technique	described	in	part	(b)	or	(c).	The	two	square	£	£	£	​	.	We	have	that	roots	of	;​	are	*​	​
,	or	*​	​	and	*​​	​	​	£	£	​	.	Therefore,	​	​	is	even,	so	*​	​	*​​	​	​	;	*​	£	​	​	;	​	Since	;	can	be	computed	efficiently,	we	have	an	algorithm	to	compute	​	;	efficiently.	6.22	The	ElGamal	Cryptosystem	can	be	implemented	in	any	subgroup	*	of	a	finite	*	and	define	*​	;	to	be	the	pubmultiplicative	group	3​	,	as	follows:	Let	;	lic	key.	The	plaintext	space	is	*	,	and	the	encryption	operation
is	​	​	​	​	*	​	​	;	,	where	​	is	random.	Here	we	show	that	distinguishing	ElGamal	encryptions	of	two	plaintexts	can	be	Turing	reduced	to	Decision	Diffie-Hellman,	and	vice	versa.	(a)	Assume	that	O	RACLE	DDH	is	an	oracle	that	solves	Decision	Diffie-Hellman	in	3​	.	Prove	that	O	RACLE	DDH	can	be	used	as	a	subroutine	in	an	algorithm	that	distinguishes	ElGamal
encryptions	of	two	given	plaintexts,	say	​	and	​​	.	(That	is,	given	​	​	​​	,	and	given	a	ciphertext	​	​	which	is	​​	,	the	distinguishing	algorithm	will	an	encryption	of	​	​	for	some	​	determine	if	​	​	or	​	.)	Answer:	For	​	​​	,	compute	7	​	​	​​	.	If	​	!	​	!	!	​​	​​	​	O	RACLE	DDH	*​	;​	7​	​	then	​	​	is	an	encryption	of	​	​	.	(b)	Assume	that	O	RACLE	D	ISTINGUISH	is	an	oracle	that	distinguishes	ElGamal
encryptions	of	any	two	given	plaintexts	​	and	​​	,	for	any	ElGamal	Cryptosystem	implemented	in	the	group	3​	as	described	above.	Suppose	further	that	O	RACLE	D	ISTINGUISH	will	determine	if	a	ciphertext	​	​	is	not	a	valid	encryption	of	either	of	​	or	​​	.	Prove	that	O	RACLE	D	ISTINGUISH	Exercises	77	can	be	used	as	a	subroutine	in	an	algorithm	that	solves
Decision	DiffieHellman	in	3​	.	Answer:	We	are	given	an	instance	of	Decision	Diffie-Hellman,	namely,	*​	;​
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